A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cold-inducible MaC2H2s are associated with cold stress response of banana fruit via regulating MaICE1. | LitMetric

Cold-inducible MaC2H2s are associated with cold stress response of banana fruit via regulating MaICE1.

Plant Cell Rep

College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, People's Republic of China.

Published: May 2019

MaC2H2s are involved in cold stress response of banana fruit via repressing the transcription of MaICE1. Although C2H2 zinc finger proteins have been found to be involved in banana fruit ripening through transcriptional controlling of ethylene biosynthetic genes, their involvement in cold stress of banana remains elusive. In this study, another C2H2-ZFP gene from banana fruit was identified, which was named as MaC2H2-3. Gene expression analysis revealed that MaC2H2-1, MaC2H2-2 and MaC2H2-3 were cold inducible in the peel of banana during low temperature storage. MaC2H2-3 functions as a transcriptional repressor and localizes predominantly in nucleus. Particularly, promoters of MaC2H2-2 and MaC2H2-3 were noticeably activated by cold as well, further indicating the potential roles of C2H2 in cold stress of banana. Moreover, MaC2H2-2 and MaC2H2-3 significantly repressed the transcription of MaICE1, a key component in cold signaling pathway. Overall, these findings suggest that MaC2H2s may take part in controlling cold stress of banana through suppressing the transcription of MaICE1, providing new insight of the regulatory basis of C2H2 in cold stress.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00299-019-02399-wDOI Listing

Publication Analysis

Top Keywords

cold stress
24
banana fruit
16
transcription maice1
12
stress banana
12
mac2h2-2 mac2h2-3
12
cold
9
stress response
8
banana
8
response banana
8
c2h2 cold
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!