Unconscious processing of coarse visual information during anticipatory threat.

Conscious Cogn

Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands; Behavioural Science Institute, Radboud University, Nijmegen, the Netherlands.

Published: April 2019

Rapid detection of threats has been proposed to rely on automatic processing of their coarse visual features. However, it remains unclear whether such a mechanism is restricted to detection of threat cues, or whether it reflects a broader sensitivity to even neutral coarse visual information features during states of threat. We used a backward masking task in which participants discriminated the orientation of subliminally presented low (3 cpd) and high (6 cpd) spatial frequency gratings, under threat (of shock) and safe conditions. Visual awareness of the gratings was assessed objectively using an additional localization task. When participants were unaware of the gratings, above chance and improved discrimination of low-spatial frequency gratings was observed under threat compared to safe trials. These findings demonstrate unconscious processing of neutral coarse visual information during threat state, supporting the view that automatic threat detection may rely on a general facilitation of coarse features irrespective of threat content.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.concog.2019.01.018DOI Listing

Publication Analysis

Top Keywords

coarse visual
16
unconscious processing
8
processing coarse
8
threat
8
visual features
8
neutral coarse
8
task participants
8
frequency gratings
8
coarse
5
visual
5

Similar Publications

Numerous efforts have been invested in previous algorithms to expose and enhance blood vessel (BV) visibility derived from clinical coronary angiography (CAG) procedures, such as noise reduction, segmentation, and background subtraction. Yet, the visibility of the BVs and their luminal content, particularly the small ones, is still limited. We propose a novel visibility enhancement algorithm, whose main body is inspired by a line completion mechanism of the visual system, i.

View Article and Find Full Text PDF

Unlabelled: Multiple sources innervate the visual thalamus to influence image-forming vision prior to the cortex, yet it remains unclear how non-retinal and retinal input coordinate to shape thalamic visual selectivity. Using dual-color two-photon calcium imaging in the thalamus of awake mice, we observed similar coarse-scale retinotopic organization between axons of superior colliculus neurons and retinal ganglion cells, both providing strong converging excitatory input to thalamic neurons. At a fine scale of ∼10 µm, collicular boutons often shared visual feature preferences with nearby retinal boutons.

View Article and Find Full Text PDF

Accurate and timely air quality forecasting is crucial for mitigating pollution-related hazards and protecting public health. Recently, there has been a growing interest in integrating visual data for air quality prediction. However, some limitations remain in existing literature, such as their focus on coarse-grained classification, single-moment estimation, or reliance on indirect and unintuitive information from visual images.

View Article and Find Full Text PDF

ModeHunter is a modular Python software package for the simulation of 3D biophysical motion across spatial resolution scales using modal analysis of elastic networks. It has been curated from our in-house Python scripts over the last 15 years, with a focus on detecting similarities of elastic motion between atomic structures, coarse-grained graphs, and volumetric data obtained from biophysical or biomedical imaging origins, such as electron microscopy or tomography. With ModeHunter, normal modes of biophysical motion can be analyzed with various static visualization techniques or brought to life by dynamics animation in terms of single or multimode trajectories or decoy ensembles.

View Article and Find Full Text PDF

Unraveling Spatial Heterogeneity in Mass Spectrometry Imaging Data with GraphMSI.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, SAR, 999077, China.

Mass spectrometry imaging (MSI) provides valuable insights into metabolic heterogeneity by capturing in situ molecular profiles within organisms. One challenge of MSI heterogeneity analysis is performing an objective segmentation to differentiate the biological tissue into distinct regions with unique characteristics. However, current methods struggle due to the insufficient incorporation of biological context and high computational demand.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!