Maize (Zea mays), sorghum (Sorghum bicolor) and pearl millet (Pennisetum glaucum) are basic staple foods for many rural or poorer communities. These crops are susceptible to plant diseases caused by multiple species of Fusarium, some of which also produce mycotoxins, including fumonisins and moniliformin that are detrimental to both humans and domesticated animals. Eighteen potentially toxigenic Fusarium strains were isolated from maize (n = 10), sorghum (n = 7) and pearl millet (n = 1) growing in the same field in Nigeria. The 17 strains from maize and sorghum were all F. proliferatum and the one strain from pearl millet was F. pseudonygamai. Under conducive conditions, the 17 F. proliferatum strains produced fumonisins, 11 in relatively large quantities (700-17,000 mg total fumonisins, i.e., FB + FB + FB/kg culture material), and six at <45 mg/kg. Ten F. proliferatum strains produced >100 mg of moniliformin per kg culture material with a maximum of 8900 mg/kg culture material. All strains could use all grains for growth and toxin production, regardless of the host from which they were isolated. Isolates varied in the amount of toxin produced on each substrate, with toxin production a property of the strain and not the host from which the strain was recovered. However, the extent to which a toxin-producing phenotype could be altered by the grain on which the fungus was grown is consistent with subtle genetic × environment interactions that require a larger data set than the one presented here to rigorously identify. In conclusion, there is significant variation in the ability of strains of F. proliferatum to produce fumonisins and moniliformin on maize, sorghum and millet. If the amount of toxin produced on the various grains in this study reflects real-world settings, e.g., poor storage, then the consumers of these contaminated grains could be exposed to mycotoxin levels that greatly exceed the tolerable daily intakes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijfoodmicro.2019.02.016 | DOI Listing |
This study investigates the nutritional and anti-nutrient profiles of extrudates produced from seven formulations of pearl millet and Bambara groundnut flour in seven different ratios: 20:80, 30:70, 40:60, 50:50, 60:40, 70:30, and 80:20, with 100% pearl millet and 100% Bambara groundnut extrudates used as controls. The extrudates were processed using a twin screw extruder and analyzed for their nutritional and anti-nutritional properties. The findings revealed a rising pattern in the content of fiber, moisture, protein, ash and fat as the substitution of Bambara groundnut increased in the extrudate.
View Article and Find Full Text PDFInt J Phytoremediation
January 2025
Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia.
The increasing demand for sustainable, robust, and cost-efficient arsenic (As) treatment techniques strengthens the implementation of new constructed wetland (CW) designs like aerated CWs in the agricultural sector. The aim was to assess and contrast the influence of various aeration rates on As elimination in subsurface flow CW utilizing plants for treating As-polluted sand. This study consisted of an experiment with 16 subsurface flow CW, operating at different As concentrations of 0, 5, 22, and 39 mg kg and aeration rates of 0, 0.
View Article and Find Full Text PDFPlants (Basel)
December 2024
School of Agriculture and Food Sustainability, The University of Queensland, Gatton, QLD 4343, Australia.
This study assessed the effectiveness of four competitive pasture species-Premier digit grass ( Steud. var. Premier), Rhodes grass ( Kunth.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Laboratoire de recherche sur les produits bioactifs et valorisation de la biomasse, Ecole Normale Supérieure de Kouba cheikh Mohamed elbachir ElIbrahimi, B.P. 92, 16308 Vieux-Kouba, Algiers, Algeria. Electronic address:
This study aimed to use a new protein complex of Pennisetin (Pen) a non gluten protein of pearl millet and casein (Cas), for curcumin (Cur) extract encapsulation using simple or complex coacervation. The potential improvement of Cur antioxidant activities and α-amylase inhibition after encapsulation was explored. Complex microparticles of Pen and Cas with various ratios exhibited average diameters ranging from 1.
View Article and Find Full Text PDFArch Microbiol
January 2025
Agricultural Botany Department, Faculty of Agriculture, Suez Canal University, 41522, Ismailia, Egypt.
Researchers have reported that Bacillus megaterium BM18-2 reduces Cd toxicity in Hybrid Pennisetum, but understanding the interaction between plants and associated endophytes is crucial for understanding phytoremediation strategies under heavy metal stress. The current study aims to monitor the colonization patterns of GFP-labeled endophytic bacteria BM18-2 on Hybrid Pennisetum grass. Additionally, it will monitor Cd's effect on plant bacterial colonization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!