Biomedical applications of nanoflares: Targeted intracellular fluorescence probes.

Nanomedicine

Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran. Electronic address:

Published: April 2019

Nanoflares are intracellular probes consisting of oligonucleotides immobilized on various nanoparticles that can recognize intracellular nucleic acids or other analytes, thus releasing a fluorescent reporter dye. Single-stranded DNA (ssDNA) complementary to mRNA for a target gene is constructed containing a 3'-thiol for binding to gold nanoparticles. The ssDNA "recognition sequence" is prehybridized to a shorter DNA complement containing a fluorescent dye that is quenched. The functionalized gold nanoparticles are easily taken up into cells. When the ssDNA recognizes its complementary target, the fluorescent dye is released inside the cells. Different intracellular targets can be detected by nanoflares, such as mRNAs coding for genes over-expressed in cancer (epithelial-mesenchymal transition, oncogenes, thymidine kinase, telomerase, etc.), intracellular levels of ATP, pH values and inorganic ions can also be measured. Advantages include high transfection efficiency, enzymatic stability, good optical properties, biocompatibility, high selectivity and specificity. Multiplexed assays and FRET-based systems have been designed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6520197PMC
http://dx.doi.org/10.1016/j.nano.2019.02.006DOI Listing

Publication Analysis

Top Keywords

gold nanoparticles
8
fluorescent dye
8
intracellular
5
biomedical applications
4
applications nanoflares
4
nanoflares targeted
4
targeted intracellular
4
intracellular fluorescence
4
fluorescence probes
4
probes nanoflares
4

Similar Publications

The detection of cysteine (Cys) and homocysteine (Hcy) in biological fluids has great significance for early diagnosis, including Alzheimer's and Parkinson's disease. The simultaneous determination of Cys and Hcy with a single probe is still a huge challenge. To enlarge the differences in space structure (line and ring) and energy (-721.

View Article and Find Full Text PDF

Metasurface Plasmon Resonance Biosensor Enhanced with Dual Gold Nanoparticles for the Ultrasensitive Quantitative Detection of C-Reactive Protein.

Nano Lett

January 2025

College of Life Science and Technology, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430074, China.

The pursuit of cutting-edge diagnostic systems capable of detecting biomarkers with exceptional sensitivity and precision is crucial for the timely and accurate monitoring of inflammatory responses. In this study, we introduce a dual gold nanoparticle-enhanced metasurface plasmon resonance (Bi-MSPR) biosensor for the ultrasensitive detection of C-reactive protein (CRP). The Bi-MSPR sensor is constructed upon a nanocup array chip with gradient-free electron density, where an innovative metasurface structure is built using a PEI-immobilized dual-gold nanoparticle amplification system.

View Article and Find Full Text PDF

Glycan-Matchmade Multivalent Decoration of Enzyme Labels for Amplified Electrochemical Detection of Glycoproteins.

Anal Chem

January 2025

Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.

Glycoproteins are of significant value to liquid biopsy of human diseases. Herein, we present a universal electrochemical platform for the amplified detection of glycoproteins, taking advantage of the glycan-matchmade multivalent decoration of enzyme labels for the enzymatic signal amplification. Briefly, the glycan-matchmade multivalent decoration involves two steps, i.

View Article and Find Full Text PDF

An Au-Ag@Au fiber surface plasmon resonance sensor for highly sensitive detection of fluoroquinolone residues.

Analyst

January 2025

Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, PR China.

Antibiotic residue detection plays an important role in protecting human health, but real-time, rapid, and highly sensitive detection is still challenging. Herein, gold and silver nanoparticles (Au-Ag NPs) were grown on the surface of optical fibers and a 50 nm thick gold film was deposited on the sensor's surface to fabricate the Au-Ag@Au fiber SPR sensor. The sensitivity of the sensor reached 3512 nm per RIU in the refractive index range of 1.

View Article and Find Full Text PDF

Background: The prevalent disease known as breast cancer has a significant impact on both men's and women's health and quality of life.

Aim: The aim of this study was to explore the potential roles of Lecaniodiscus cupanioides (planch.) extract and triterpenoid-derived gold nanoparticles (AuNPs) in cancer therapy, specifically targeting MCF-7 breast cancer cell lines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!