Background: The epithelial to mesenchymal transition (EMT) contributes to fibrosis during silicosis. Zinc finger CCCH-type containing 4 protein (ZC3H4) is a novel CCCH-type zinc finger protein that activates inflammation in pulmonary macrophages during silicosis. However, whether ZC3H4 is involved in EMT during silicosis remains unclear. In this study, we investigated the circular ZC3H4 (circZC3H4) RNA/microRNA-212 (miR-212) axis as the upstream molecular mechanism regulating ZC3H4 expression and the downstream mechanism by which ZC3H4 regulates EMT as well as its accompanying migratory characteristics.
Methods: The protein levels were assessed via Western blotting and immunofluorescence staining. Scratch assays were used to analyze the increased mobility induced by silica. The CRISPR/Cas9 system and small interfering RNAs (siRNAs) were employed to analyze the regulatory mechanisms of ZC3H4 in EMT and migration changes.
Results: Specific knockdown of ZC3H4 blocked EMT and migration induced by silicon dioxide (SiO). Endoplasmic reticulum (ER) stress mediated the effects of ZC3H4 on EMT. circZC3H4 RNA served as an miR-212 sponge to regulate ZC3H4 expression, which played a pivotal role in EMT. Tissue samples from mice and patients confirmed the upregulation of ZC3H4 in alveolar epithelial cells.
Conclusions: ZC3H4 may act as a novel regulator in the progression of SiO-induced EMT, which provides a reference for further pulmonary fibrosis research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.toxlet.2019.02.014 | DOI Listing |
Discov Oncol
January 2025
Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
The zinc finger protein 32 (ZNF32) has been associated with high expression in various cancers, underscoring its significant function in both cancer biology and immune response. To further elucidate the biological role of ZNF32 and identify potential immunotherapy targets in cancer, we conducted an in-depth analysis of ZNF32. We comprehensively investigated the expression of ZNF32 across tumors using diverse databases, including TCGA, CCLE, TIMER2.
View Article and Find Full Text PDFAntioxid Redox Signal
January 2025
Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.
Hypoxia ischemia (HI) is a leading cause of cerebral palsy and long-term neurological sequelae in infants. Given that mitochondrial dysfunction in neurons contributes to HI brain damage, this study aimed to investigate the regulatory role of miR-9-5p in mitochondrial function following HI injury. Overexpression of miR-9-5p in HI mice or HO-exposed PC12 cells suppressed neuronal injury, associated with increased mitochondrial copy number, normalizing mitochondrial membrane potential, improved nuclear factor-erythroid factor 2-related factor 2 (Nrf2) activation, and downregulation of Keap1.
View Article and Find Full Text PDFIUBMB Life
January 2025
Senior Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
Hepatocellular carcinoma (HCC) ranks among the most prevalent types of cancer globally. Zinc finger protein 169 (ZNF169) holds significant importance as a transcription factor, yet its precise function in HCC remains to be elucidated. This study aims to examine the clinical importance, biological functions, and molecular pathways associated with ZNF169 in the development of HCC.
View Article and Find Full Text PDFProtein phosphatases are critical for regulating cell signaling, cell cycle, and cell fate decisions, and their dysregulation leads to an array of human diseases like cancer. The dual specificity phosphatases (DUSPs) have emerged as important factors driving tumorigenesis and cancer therapy resistance. DUSP12 is a poorly characterized atypical DUSP widely conserved throughout evolution.
View Article and Find Full Text PDFProtein Sci
February 2025
Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA.
Loz1 is a zinc-responsive transcription factor in fission yeast that maintains cellular zinc homeostasis by repressing the expression of genes required for zinc uptake in high zinc conditions. Previous deletion analysis of Loz1 found a region containing two tandem CH zinc-fingers and an upstream "accessory domain" rich in histidine, lysine, and arginine residues to be sufficient for zinc-dependent DNA binding and gene repression. Here we report unexpected biophysical properties of this pair of seemingly classical CH zinc fingers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!