Chronic, low-level oral exposure to marine toxin, domoic acid, alters whole brain morphometry in nonhuman primates.

Neurotoxicology

Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA; Center on Human Development and Disability, Seattle, WA, USA; Infant Primate Research Laboratory, Washington National Primate Research Center, Seattle, WA, USA.

Published: May 2019

Domoic acid (DA) is an excitatory neurotoxin produced by marine algae and responsible for Amnesiac Shellfish Poisoning in humans. Current regulatory limits (˜0.075-0.1 mg/kg/day) protect against acute toxicity, but recent studies suggest that the chronic consumption of DA below the regulatory limit may produce subtle neurotoxicity in adults, including decrements in memory. As DA-algal blooms are increasing in both severity and frequency, we sought to better understand the effects of chronic DA exposure on reproductive and neurobehavioral endpoints in a preclinical nonhuman primate model. To this end, we initiated a long-term study using adult, female Macaca fascicularis monkeys exposed to daily, oral doses of 0.075 or 0.15 mg/kg of DA for a range of 321-381, and 346-554 days, respectively. This time period included a pre-pregnancy, pregnancy, and postpartum period. Throughout these times, trained data collectors observed intentional tremors in some exposed animals during biweekly clinical examinations. The present study explores the basis of this neurobehavioral finding with in vivo imaging techniques, including diffusion tensor magnetic resonance imaging and spectroscopy. Diffusion tensor analyses revealed that, while DA exposed macaques did not significantly differ from controls, increases in DA-related tremors were negatively correlated with fractional anisotropy, a measure of structural integrity, in the internal capsule, fornix, pons, and corpus callosum. Brain concentrations of lactate, a neurochemical closely linked with astrocytes, were also weakly, but positively associated with tremors. These findings are the first documented results suggesting that chronic oral exposure to DA at concentrations near the current human regulatory limit are related to structural and chemical changes in the adult primate brain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6527455PMC
http://dx.doi.org/10.1016/j.neuro.2019.02.016DOI Listing

Publication Analysis

Top Keywords

oral exposure
8
domoic acid
8
regulatory limit
8
diffusion tensor
8
chronic
4
chronic low-level
4
low-level oral
4
exposure marine
4
marine toxin
4
toxin domoic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!