Atherosclerosis is the primary underlying cause of cardiovascular disease which preferentially develops at arterial regions exposed to disturbed flow (DF), but much less at regions of unidirectional laminar flow (UF). Recent studies have demonstrated that DF and UF differentially regulate important aspects of endothelial function, such as vascular inflammation, oxidative stress, vascular tone, cell proliferation, senescence, mitochondrial function, and glucose metabolism. DF and UF regulate vascular pathophysiology via differential regulation of mechanosensitive transcription factors (MSTFs) (KLF2, KLF4, NRF2, YAP/TAZ/TEAD, HIF-1α, NF-κB, AP-1, and others). Emerging studies show that MSTFs represent promising therapeutic targets for the prevention and treatment of atherosclerosis. We present here a comprehensive overview of the role of MSTFs in atherosclerosis, and highlight future directions for developing novel therapeutic agents by targeting MSTFs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6433497 | PMC |
http://dx.doi.org/10.1016/j.tips.2019.02.004 | DOI Listing |
Biophys Rev
December 2024
Department of Optics, Pharmacology and Anatomy, University of Alicante, San Vicente del Raspeig, Spain.
In recent decades, research on mechanotransduction has advanced considerably, focusing on the effects of audible acoustic waves (AAWs) and low-vibration stimulation (LVS), which has propelled the field of sonobiology forward. Taken together, the current evidence demonstrates the influence of these biosignals on key cellular processes, such as growth, differentiation and migration in mammalian cells, emphasizing the determining role of specific physical parameters during stimulation, such as frequency, sound pressure level/amplitude and exposure time. These mechanical waves interact with various cellular elements, including ion channels, primary cilia, cell-cell adhesion receptors, cell-matrix and extracellular matrix proteins, and focal adhesion complexes.
View Article and Find Full Text PDFBiophys Rev
December 2024
Cancer Research UK Scotland Institute, Garscube Estate, Switchback Rd, Glasgow, G61 1BD UK.
Pancreatic adenocarcinoma (PDAC) is the predominant form of pancreatic cancer and one of the leading causes of cancer-related death worldwide, with an extremely poor prognosis after diagnosis. High mortality from PDAC arises partly due to late diagnosis resulting from a lack of early-stage biomarkers and due to chemotherapeutic drug resistance, which arises from a highly fibrotic stromal response known as desmoplasia. Desmoplasia alters tissue mechanics, which triggers changes in cell mechanosensing and leads to dysregulated transcriptional activity and disease phenotypes.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea.
Cortactin (CTTN) is an actin-binding protein regulating actin polymerization and stabilization, which are vital processes for maintaining skeletal muscle homeostasis. Despite the established function of CTTN in actin cytoskeletal dynamics, its role in the myogenic differentiation of progenitor cells remains largely unexplored. In this study, we investigated the role of CTTN in the myogenic differentiation of C2C12 myoblasts by analyzing its effects on actin cytoskeletal remodeling, myocardin-related transcription factor A (MRTFA) nuclear translocation, serum response factor (SRF) activation, expression of myogenic transcription factors, and myotube formation.
View Article and Find Full Text PDFJ Clin Endocrinol Metab
January 2025
Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, Address: Hungary, 4032 Debrecen Nagyerdei krt. 98. Tel. +36-52-255-600.
Context: Increased orbital tissue volume due to matrix expansion, orbital fibroblast (OF) proliferation and adipocyte differentiation are the hallmarks of thyroid eye disease (TED). Their combination with the presence of hyaluronan-bound excess water in the constrains of the bony orbit results in increased intraorbital pressure. High intraorbital pressure, along with changes in the mechanical properties of orbital tissues, may lead to the activation of mechanosensitive receptors.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Zoology, University of São Paulo, São Paulo, SP, Brazil.
Animals have evolved numerous mechanisms to perceive and interact with the environment that can be translated into different sensory modalities. However, the genomic and phenotypic features that support sensory functions remain enigmatic for many invertebrates, such as bivalves, an ecologically and economically important taxonomic group. No repertoire of sensory genes has been characterized in bivalves, representing a significant knowledge gap in molluscan sensory biology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!