A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Double-stranded sperm DNA damage is a cause of delay in embryo development and can impair implantation rates. | LitMetric

Objective: To analyze the effect of single- and double-stranded sperm DNA fragmentation (ssSDF and dsSDF) on human embryo kinetics monitored under a time-lapse system.

Design: Observational, double blind, prospective cohort study.

Setting: University spin-off and private center.

Patient(s): One hundred ninety-six embryos from 43 infertile couples were included prospectively.

Intervention(s): None.

Main Outcome Measure(s): SsSDF and dsSDF were analyzed in the same semen sample used for intracytoplasmic sperm injection. Embryo kinetics was then monitored using time-lapse technology, and the timing of each embryo division was obtained.

Result(s): When comparing embryos obtained from semen samples with low dsSDF and high dsSDF, splitting data using a statistically significant delay in high dsSDF was observed in second polar body extrusion, T4, T8, morula, and starting blastocyst and embryo implantation rates were impaired. Embryo kinetics and implantation rates are not significantly affected when high values of ssSDF are present. Different patterns of delay in embryo kinetics were observed for these different types of DNA damage: dsSDF caused a delay along all stages of embryo development; however, its major effect was observed at the second polar body extrusion and morula stages, coinciding with embryo DNA damage checkpoint activation as described before; ssSDF had its major effect at the pronucleus stage, but embryo kinetics was then restored at all following stages. The results show that dsSDF could be the main type of DNA damage that affects embryo development in intracytoplasmic sperm injection cycles, probably due to motility-based sperm selection in this assisted reproduction procedure.

Conclusion(s): Double-stranded sperm DNA damage caused a delay in embryo development and impaired implantation, while single-stranded DNA damage did not significantly affect embryo kinetics and implantation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fertnstert.2018.11.035DOI Listing

Publication Analysis

Top Keywords

embryo kinetics
24
dna damage
20
double-stranded sperm
12
sperm dna
12
embryo
12
embryo development
12
sssdf dssdf
8
kinetics monitored
8
monitored time-lapse
8
intracytoplasmic sperm
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!