A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Zebrafish cysteine and glycine-rich protein 3 is essential for mechanical stability in skeletal muscles. | LitMetric

Zebrafish cysteine and glycine-rich protein 3 is essential for mechanical stability in skeletal muscles.

Biochem Biophys Res Commun

School of Life Sciences, Fudan University, Shanghai, 200438, China. Electronic address:

Published: April 2019

Cysteine and glycine-rich protein 3 (CSRP3) is a striated muscle-specific cytoskeleton protein which participates in cardiac stretch sensing. Mutations in CSRP3 gene cause cardiomyopathies and deregulation of CSRP3 has been found in patients with heart failure and several skeletal muscle diseases. However, the mechanism underneath these disorders still remains poorly understood. Here we generated the first csrp3 knockout zebrafish. csrp3 embryos showed no gross morphological defects but csrp3 deficient skeletal muscle fibers were prone to lesions upon prolonged stretching force. Further studies revealed csrp3 cooperatively interacted with ilk to maintain skeletal muscle mechanical stability and regulated tcap activation. Thus, our work has established a zebrafish model to investigate the function of csrp3 gene, and provides novel insights towards how csrp3 defects may lead to skeletal myopathies by a mechanistic link between Csrp3 and force stimuli.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2019.02.115DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
12
csrp3
10
cysteine glycine-rich
8
glycine-rich protein
8
mechanical stability
8
csrp3 gene
8
skeletal
5
zebrafish cysteine
4
protein essential
4
essential mechanical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!