Papaverine identified as an inhibitor of high mobility group box 1/receptor for advanced glycation end-products interaction suppresses high mobility group box 1-mediated inflammatory responses.

Biochem Biophys Res Commun

Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan; Department of Genomic Medicinal Science, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan. Electronic address:

Published: April 2019

The interaction of high mobility group box 1 (HMGB1), which is secreted from immune and dying cells during cellular infection and injury, and receptor for advanced glycation end-products (RAGE) appears to be critical for acute and chronic inflammatory disorders. Here we designed a unique cyclic β-hairpin peptide (Pepb2), which mimics the predicted RAGE-binding domain of HMGB1. Pepb2 competitively inhibited HMGB1/RAGE interaction. We then identified papaverine as a Pepb2 mimetic by in silico 3D-structural similarity screening from the DrugBank library. Papaverine was found to directly inhibit HMGB1/RAGE interaction. It also suppressed the HMGB1-mediated production of pro-inflammatory cytokines, IL-6 and TNF-α, in mouse macrophage-like RAW264.7 cells and bone marrow-derived macrophages. In addition, papaverine attenuated mortality in cecal ligation puncture-induced sepsis model mice. Taken together, these findings indicate that papaverine could become a useful therapeutic against HMGB1/RAGE-mediated sepsis and other inflammatory diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2019.01.136DOI Listing

Publication Analysis

Top Keywords

high mobility
12
mobility group
12
group box
12
advanced glycation
8
glycation end-products
8
hmgb1/rage interaction
8
papaverine
5
papaverine identified
4
identified inhibitor
4
inhibitor high
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!