The TEL-AML1 fusion gene, generated by the t(12;21) chromosome translocation, arises in a progenitor/stem cell and could induce clonal expansion of a persistent preleukemic B-cell clone which, on acquisition of secondary alterations, may turn into full-blown leukemia. During infections, deregulated cytokine signaling, including transforming growth factor β (TGF-β), can further accelerate this process by creating a protumoral bone marrow (BM) microenvironment. Here, we show that activin A, a member of the TGF-β family induced under inflammatory conditions, inhibits the proliferation of normal progenitor B cells but not that of preleukemic TEL-AML1-positive clones, thereby providing a selective advantage to the latter. Finally, we find that activin A inhibits BM-derived mesenchymal stromal cell-mediated secretion of CXCL12, a major chemoattractant in the BM compartment, thereby contributing to shape a leukemia-promoting environment. Overall, our findings indicate that activin A, in concert with TGF-β, could play an important role in the creation of a pro-oncogenic BM microenvironment and provide novel mechanistic insights into TEL-AML1-associated leukemogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exphem.2019.02.006DOI Listing

Publication Analysis

Top Keywords

bone marrow
8
marrow microenvironment
8
activin
4
activin contributes
4
contributes definition
4
definition pro-oncogenic
4
pro-oncogenic bone
4
microenvironment t1221
4
t1221 preleukemia
4
preleukemia tel-aml1
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!