Aims: This paper presents the potential of environmentally sourced bacteriophages to affect the growth of clinical isolates of Pseudomonas aeruginosa biofilms, and assesses the respective plaque morphotypes presented by each bacteriophage, in vitro.
Methods And Results: Bacterial host strains were typed for their ability to produce the quorum sensing-controlled virulence factor pyocyanin, and then tested for bacteriophage susceptibility using the spot test method. The bacteriophages were co-administered with ciprofloxacin in order to determine whether the bacteriophages would demonstrate synergistic or antagonistic behaviour to the antibiotic in vitro. Results suggest a potential relationship between the bacteriophage plaque size and biofilm inhibition, where those producing smaller plaques appear to be more effective at reducing bacterial biofilm formation.
Conclusions: This phenomenon may be explained by a high adsorption rate leading to the rapid formation of smaller plaques, and greater biofilm reduction associated with the loss of viable bacterial cells before the cells can adhere to the surface and form a biofilm. Results from the co-administration of bacteriophage and ciprofloxacin suggest that the two work synergistically to affect P. aeruginosa biofilms.
Significance And Impact Of The Study: The data indicate enhanced efficacy of ciprofloxacin by ≥50%. This could offer an alternative strategy for targeting antibiotic-resistant infections.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jam.14241 | DOI Listing |
Sci Rep
January 2025
School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India.
Pyomelanogenic P. aeruginosa, frequently isolated from patients with urinary tract infections and cystic fibrosis, possesses the ability to withstand oxidative stress, contributing to virulence and resulting in persistent infections. Whole genome sequence analysis of U804, a pyomelanogenic, multidrug-resistant, clinical isolate, demonstrates the mechanism underlying pyomelanin overproduction.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
Zybio Inc, Chongqing, 400082, China.
Lipase (EC 3.1.1.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Department of Environmental Sciences, Southern Illinois University Edwardsville, 44 Circle Drive SW 2145, PO Box 1099, Edwardsville, IL 62026. Electronic address:
The antimicrobial properties and widespread incorporation of silver nanoparticles (AgNPs) into consumer products have raised concerns about their potential impact on public health and the environment. This study examined citrate-coated and uncoated AgNPs' antimicrobial effects on microbial growth and their potential to induce antimicrobial resistance (AMR) in the natural environment. We isolated Pseudomonas aeruginosa and Salmonella spp.
View Article and Find Full Text PDFSci Total Environ
January 2025
Technical University of Denmark, DTU Sustain, Bygningstorvet, Building 115, 2800 Kg. Lyngby T. Pérez Guillemette, Denmark. Electronic address:
Recirculating showers save up to 70-80 % of the water and energy use of conventional showers, but water quality in these systems are not studied very well due to the technology's early stages. The aim of this study was to provide an overview of information available on which microorganisms were investigated and at which densities. Based on this platform we further aimed at identifying key microbial indicators and pathogens for monitoring water quality in these systems by integrating data from the top five waterborne outbreaks with findings from studies on (1) microbial investigations in reuse projects involving shower effluents or combined bathroom streams, (2) shower water effluents, and (3) biofilms in conventional showers.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt.
Azurin, a bacterial blue-copper protein, has garnered significant attention as a potential anticancer drug in recent years. Among twenty Pseudomonas aeruginosa isolates, we identified one isolate that demonstrated potent and remarkable azurin synthesis using the VITEK 2 system and 16S rRNA sequencing. The presence of the azurin gene was confirmed in the genomic DNA using specific oligonucleotide primers, and azurin expression was also detected in the synthesized cDNA, which revealed that the azurin expression is active.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!