Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Graphene, despite its centrosymmetric structure, is predicted to have a substantial second order nonlinearity, arising from non-local effects. However, there is disagreement between several published theories and experimental data. Here we derive an expression for the second order conductivity of graphene in the non-local regime using perturbation theory, concentrating on the difference frequency mixing process, and compare our results with those already published. We find a second-order conductivity (σ ≈ 10 AmV) that is approximately three orders of magnitude less than that estimated from recent experimental results. This indicates that nonlinear optical coupling to plasmons in graphene cannot be described perturbatively through the electronic nonlinearity, as previously thought. We also show that this discrepancy cannot be attributed to the bulk optical nonlinearity of the substrate. As a possible alternative, we present a simple theoretical model of how a non-linearity can arise from photothermal effects, which generates a field at least two orders of magnitude larger than that found from perturbation theory.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6397314 | PMC |
http://dx.doi.org/10.1038/s41598-019-39961-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!