Animal studies remain an essential part of drug discovery since in vitro models are not capable of describing the complete living organism. We developed and qualified a microchip electrophoresis-electrochemical detection (MCE-EC) method for rapid analysis of morphine in mouse plasma using a commercial MCE-EC device. Following liquid-liquid extraction (LLE), we achieved within-run precision of 3.7 and 4.5% (coefficient of variation, CV, n = 6) and accuracy of 106.9% and 100.7% at biologically relevant morphine concentrations of 5 and 20 µM in plasma, respectively. The same method was further challenged by morphine detection in mouse brain homogenates with equally good within-run precision (7.8% CV, n = 5) at 1 µM concentration. The qualified method was applied to analyze a set of plasma and brain homogenate samples derived from a behavioral animal study. After intraperitoneal administration of 20 mg/kg morphine hydrochloride, the detected morphine concentrations in plasma were between 6.7 and 17 µM. As expected, the morphine concentrations in the brain were significantly lower, ca. 80-125 nM (280-410 pg morphine/mg dissected brain), and could only be detected after preconcentration achieved during LLE. In all, the microchip-based separation system is proven feasible for rapid analysis of morphine to provide supplementary chemical information to behavioral animal studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6397260PMC
http://dx.doi.org/10.1038/s41598-019-40116-5DOI Listing

Publication Analysis

Top Keywords

rapid analysis
12
morphine concentrations
12
morphine
8
morphine mouse
8
mouse plasma
8
plasma brain
8
microchip electrophoresis-electrochemical
8
electrophoresis-electrochemical detection
8
animal studies
8
analysis morphine
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!