AI Article Synopsis

  • The study aimed to explore the protective role of a long noncoding RNA, growth arrest-specific 5, in a rat model subjected to prolonged deep hypothermic circulatory arrest.
  • Researchers used various methods, including dual luciferase assays and small interfering RNA injections, to assess the interactions and effects on microRNA levels in the hippocampus after the hypothermic event.
  • Results indicated that inhibiting growth arrest-specific 5 led to increased microRNA-23a levels and reduced neuronal apoptosis, suggesting its potential role in mitigating brain damage following severe hypothermic conditions.

Article Abstract

Objective: We sought to investigate cerebroprotection by targeting long noncoding RNA growth arrest-specific 5 in a rat model of prolonged deep hypothermic circulatory arrest.

Methods: Deep hypothermic circulatory arrest was conducted for 60 minutes when the pericranial temperature was cooled to 18°C in rats. Dual luciferase assay was used to detect the binding relationship between growth arrest-specific 5 and putative target microRNAs. Adeno-associated viral vectors containing growth arrest-specific 5 small interfering RNA or negative control small interfering RNA were administered by intracerebroventricular injection 14 days before deep hypothermic circulatory arrest. Expressions of growth arrest-specific 5, microRNA-23a, phosphate and tension homology, Bcl-2-associated X protein, Bcl-2, phospho-protein kinase B, protein kinase B, and cleaved caspase-3 in the hippocampus were measured by quantitative reverse transcription polymerase chain reaction and Western blot. Spatial learning and memory functions were evaluated by the Morris water maze test. The hippocampus was harvested for histologic examinations and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling staining.

Results: Luciferase assay showed that growth arrest-specific 5 targeted and inhibited microRNA-23a expression. After deep hypothermic circulatory arrest, hippocampal growth arrest-specific 5 expression was significantly enhanced with a robust decrease of hippocampal microRNA-23a expression. Small interfering RNA growth arrest-specific 5 significantly inhibited growth arrest-specific 5 expression and enhanced microRNA-23a expression in the hippocampus, accompanied with decreases of phosphate and tension homology and Bcl-2-associated X protein expression, and increases of Bcl-2 expression and phospho-protein kinase B/protein kinase B ratio. Growth arrest-specific 5 knockdown inhibited neuronal apoptosis, attenuated histologic damages, and increased the number of surviving neurons in the hippocampus. Spatial learning and memory functions after deep hypothermic circulatory arrest were also markedly improved by growth arrest-specific 5 inhibition.

Conclusions: Inhibition of large noncoding RNA growth arrest-specific 5 can provide a powerful cerebroprotection against deep hypothermic circulatory arrest, which may be mediated through microRNA-23a/phosphate and tension homology pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtcvs.2019.01.050DOI Listing

Publication Analysis

Top Keywords

growth arrest-specific
48
deep hypothermic
28
hypothermic circulatory
28
circulatory arrest
24
rna growth
16
noncoding rna
12
growth
12
arrest-specific
12
small interfering
12
interfering rna
12

Similar Publications

Background/objectives: Vitamin K-dependent proteins (VKDPs) all commonly possess specially modified γ-carboxyglutamic acid residues created in a vitamin K-dependent manner. Several liver-derived coagulation factors are well characterised VKDPs. However, much less is known about extrahepatic VKDPs, which are more diverse in their molecular structures and functions, and some of which have been implicated in inflammatory disorders.

View Article and Find Full Text PDF

Bisecting GlcNAc modification of vesicular GAS6 regulates CAFs activation and breast cancer metastasis.

Cell Commun Signal

January 2025

Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi, 710069, P. R. China.

Background: Cancer-associated fibroblasts (CAFs) are a pivotal component of the tumor microenvironment (TME), playing key roles in tumor initiation, metastasis, and chemoresistance. While glycosylation is known to regulate various cellular processes, its impact on CAFs activation remains insufficiently explored.

Methods: We assessed the correlation between bisecting GlcNAc levels and CAFs markers (α-SMA, PDGFRA, PDGFRB) in breast cancer tissues.

View Article and Find Full Text PDF

Long non-coding RNAs as prognostic biomarkers in non-muscle invasive bladder cancer: A systematic review.

Narra J

December 2024

Division of Urology, Department of Surgery, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.

Traditional prognostic tools for non-muscle invasive bladder cancer (NMIBC) often overestimate progression and recurrence risks, underscoring the need for more precise biomarkers. While long non-coding ribonucleic acids (lncRNAs) have been reviewed in bladder cancer, no review has focused on NMIBC. The aim of this study was to address this gap by investigating the role of lncRNAs in predicting NMIBC survival and progression.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder that primarily affects the motor neurons in the brain and spinal cord. While the exact cause of ALS is not fully understood, a combination of genetic and environmental factors is believed to contribute to its development. Growth arrest-specific 6 (Gas6), a vitamin K-dependent protein, has been recognized to enhance oligodendrocytes and neurons' survival and is associated with different kinds of (neuro)inflammatory conditions.

View Article and Find Full Text PDF

From diagnosis to therapy: The role of LncRNA GAS5 in combatting some cancers affecting women.

Gene

March 2025

Uttaranchal Institute of Pharmaceutical Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India.

Long non-coding RNAs (lncRNAs) are a collection of non-coding RNA molecules that consist of more than 200 nucleotides. In human malignancies, these lncRNAs exhibit abnormal expression patterns and play a significant role in either suppressing or promoting tumor growth. They achieve this by modulating various functions and mechanisms within cancer cells, including proliferation, invasion, metastasis, apoptosis, and resistance to different therapeutic approaches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!