AI Article Synopsis

  • The paper presents a method for non-invasive, three-dimensional measurement of ankle joint movement using dynamic MRI during a single range-of-motion cycle.
  • It utilizes intensity-based registration to analyze multi-plane MRI data, capturing both the rigid motion of ankle bones and their non-rigid deformation over time.
  • The technique was tested with dynamic MRI data from a pilot study involving six healthy children, showing promising results in accurately visualizing joint biomechanics.

Article Abstract

In this paper, we propose a method for non-invasively measuring three-dimensional in vivo kinematics of the ankle joint from a dynamic MRI acquisition of a single range-of-motion cycle. The proposed approach relies on an intensity-based registration method to estimate motion from multi-plane dynamic MRI data. Our approach recovers not only the movement of the skeleton, but also the possibly non-rigid temporal deformation of the joint. First, the rigid motion of each ankle bone is estimated. Second, a four-dimensional (3D+time) high-resolution dynamic MRI sequence is estimated through the use of the log-euclidean framework for the computation of temporal dense deformation fields. This approach has been then applied and evaluated on in vivo dynamic MRI data acquired for a pilot study on six healthy pediatric cohort in order to establish in vivo normative joint biomechanics. Results demonstrate the robustness of the proposed pipeline and very promising high resolution visualization of the ankle joint.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiomech.2019.02.007DOI Listing

Publication Analysis

Top Keywords

dynamic mri
16
ankle joint
12
mri data
8
joint
5
dynamic
5
vivo
4
vivo ankle
4
joint kinematics
4
kinematics dynamic
4
dynamic magnetic
4

Similar Publications

In cardiovascular research, electromagnetic fields generated by Riga plates are utilized to study or manipulate blood flow dynamics, which is particularly crucial in developing treatments for conditions such as arterial plaque deposition and understanding blood behavior under varied flow conditions. This research predicts the flow patterns of blood enhanced with gold and maghemite nanoparticles (gold-maghemite/blood) in an electromagnetic microchannel influenced by Riga plates with a temperature gradient that decays exponentially, under sudden changes in pressure gradient. The flow modeling includes key physical influences like radiation heat emission and Darcy drag forces in porous media, with the flow mathematically represented through unsteady partial differential equations solved using the Laplace transform (LT) method.

View Article and Find Full Text PDF

Molecular Imaging for Biomimetic Nanomedicine in Cancer Therapy: Current Insights and Challenges.

ACS Appl Mater Interfaces

January 2025

Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.

Coating biological membranes onto biomimetic nanocarriers improves biocompatibility, prolongs circulation, and enhances targeted delivery for cancer precision medicine. To better understand the biodistribution profiles of these biomimetic nanosystems, molecular imaging techniques, including optical imaging, radionuclide imaging, magnetic resonance imaging, and ultrasound imaging, have been widely employed for in vivo tracking and dynamic imaging. Here in this review, we delve into the profound role of these imaging modalities in visualizing changes in the tumor microenvironment, particularly in monitoring oxygen consumption and immune response dynamics, highlighting their potential to improve cancer therapies.

View Article and Find Full Text PDF

When retrieved, seemingly stable memories can become sensitive to significant events, such as acute stress. The mechanisms underlying these memory dynamics remain poorly understood. Here, we show that noradrenergic stimulation after memory retrieval impairs subsequent remembering, depending on hippocampal and cortical signals emerging during retrieval.

View Article and Find Full Text PDF

Purpose: To propose a domain-conditioned and temporal-guided diffusion modeling method, termed dynamic Diffusion Modeling (dDiMo), for accelerated dynamic MRI reconstruction, enabling diffusion process to characterize spatiotemporal information for time-resolved multi-coil Cartesian and non-Cartesian data.

Methods: The dDiMo framework integrates temporal information from time-resolved dimensions, allowing for the concurrent capture of intra-frame spatial features and inter-frame temporal dynamics in diffusion modeling. It employs additional spatiotemporal ($x$-$t$) and self-consistent frequency-temporal ($k$-$t$) priors to guide the diffusion process.

View Article and Find Full Text PDF

The left atrium (LA) is pivotal in cardiac hemodynamics, serving as a dynamic indicator of left ventricular (LV) compliance and diastolic function. The LA undergoes structural and functional adaptations in response to hemodynamic stress, infiltrative processes, myocardial injury, and arrhythmic triggers. Remodeling of the LA in response to these stressors directly impacts pulmonary circulation, eventually leading to pulmonary capillary involvement, pulmonary artery hypertension, and eventually right ventricular failure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!