SF2523 inhibits human chondrosarcoma cell growth in vitro and in vivo.

Biochem Biophys Res Commun

Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China. Electronic address:

Published: April 2019

Developing novel therapeutic agents against chondrosarcoma is important. SF2523 is a PI3K-Akt-mTOR and bromodomain-containing protein 4 (BRD4) dual inhibitor. Its activity in human chondrosarcoma cells is tested. Our results show that SF2523 potently inhibited survival, proliferation and migration, and induced apoptosis activation in SW1353 cells and primary human chondrosarcoma cells. The dual inhibitor was yet non-cytotoxic to the primary human osteoblasts and OB-6 osteoblastic cells. SF2523 blocked Akt-mTOR activation and downregulated BRD4-regulated genes (Bcl-2 and c-Myc) in chondrosarcoma cells. It was more efficient in killing chondrosarcoma cells than other established PI3K-Akt-mTOR and BRD4 inhibitors, including JQ1, perifosine and OSI-027. In vivo, intraperitoneal injection of SF2523 (30 mg/kg) potently inhibited subcutaneous SW1353 xenograft tumor growth in severe combined immunodeficient mice. Akt-mTOR inhibition as well as Bcl-2 and c-Myc downregulation were detected in SF2523-treated SW1353 tumor tissues. In conclusion, targeting PI3K-Akt-mTOR and BRD4 by SF2523 potently inhibited chondrosarcoma cell growth in vitro and in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2019.02.080DOI Listing

Publication Analysis

Top Keywords

chondrosarcoma cells
16
human chondrosarcoma
12
potently inhibited
12
chondrosarcoma cell
8
cell growth
8
growth in vitro
8
in vitro in vivo
8
dual inhibitor
8
sf2523 potently
8
primary human
8

Similar Publications

Transcriptomic data integration and analysis revealing potential mechanisms of doxorubicin resistance in chondrosarcoma cells.

Biochem Pharmacol

December 2024

Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan; Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan; Department of Pharmacology, School of Medicine, China Medical University, Taichung 40402, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan; Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu 30205, Taiwan. Electronic address:

Chondrosarcoma is a type of bone cancer that originates from cartilage cells. In clinical practice, surgical resection is the primary treatment for chondrosarcoma, but chemotherapy becomes essential for patients with metastasis or tumors in surgically inaccessible sites. However, drug resistance often leads to treatment failure.

View Article and Find Full Text PDF

A promising role of noble metal NPs@MOFs in chondrosarcoma management.

Nanoscale

December 2024

State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China.

Chondrosarcoma, a challenging and malignant neoplasm originating from cartilage cells, poses significant diagnostic and therapeutic hurdles due to its resistance to conventional treatments and the complexity of its diagnosis. Noble metal nanoparticle-embedded metal-organic frameworks (NPs@MOFs) stand out as a novel approach for the diagnosis and treatment of chondrosarcoma. This review delves into the properties and applications of NPs@MOFs, focusing on their classification by noble metal type and their role in enhancing photothermal therapy (PTT), photodynamic therapy (PDT), targeted drug delivery and chondrosarcoma diagnosis.

View Article and Find Full Text PDF

Introduction: Osteoarthritis (OA) is a chronic degenerative joint disease characterized by the progressive degradation of articular cartilage, resulting in pain and reduced mobility. Turmeric ( L.) has been widely recognized for its anti-inflammatory and antioxidant properties, but the molecular mechanisms underlying its therapeutic effects remain inadequately explored.

View Article and Find Full Text PDF

KDELR1 regulates chondrosarcoma drug resistance and malignant behavior through Intergrin-Hippo-YAP1 axis.

Cell Death Dis

December 2024

Spinal Tumor Center, Department of Orthopaedic Oncology, No.905 Hospital of PLA Navy, Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China.

Chondrosarcoma (CS) is the second most common primary bone malignancy, known for its unique transcriptional landscape that renders most CS subtypes resistant to chemotherapy, including neoadjuvant chemotherapy commonly used in osteosarcoma (OS) treatment. Understanding the transcriptional landscape of CS and the mechanisms by which key genes contribute to chemotherapy resistance could be a crucial step in overcoming this challenge. To address this, we developed a single-cell transcriptional map of CS, comparing it with OS and normal cancellous bone.

View Article and Find Full Text PDF

Chondrosarcomas (CHS) constitute approximately 20% of all primary malignant bone tumors, characterized by a slow growth rate with initial manifestation of few signs and symptoms. These malignant cartilaginous neoplasms, particularly those with dedifferentiated histological subtypes, pose significant therapeutic challenges, as they exhibit high resistance to both radiation and chemotherapy. Ranging from relatively benign, low-grade tumors (grade I) to aggressive high-grade tumors with the potential for lung metastases and a grim prognosis, there is a critical need for innovative diagnostic and therapeutic approaches, particularly for patients with more aggressive forms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!