Overexpression of the KNOX gene Tkn4 affects pollen development and confers sensitivity to gibberellin and auxin in tomato.

Plant Sci

Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University; Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331 Chongqing, China. Electronic address:

Published: April 2019

The knotted1-like homeobox genes not only regulate the formation and differentiation of meristems and vascular system but are also involved in biosynthesis and signal transduction of diverse plant hormones in tomato. Here, we showed that a knotted1-like homeobox gene Tkn4 is required for pollen and pollen tube growth when this gene is overexpressed in tomato. Pollen grains in the Tkn4 overexpressed plants (Tkn4-OX) germinated quicker than those in the wild-type (WT) plant cultured in vitro in germination media. The percentage of fruit set was higher in Tkn4-OX than in WT plants and the transgenic plants showed an ordered inflorescence. Tkn4-OX seedlings also exhibited sensitivity to gibberellins (GA) and auxins. RNA sequencing results showed that the expression of genes related to sugar, cell wall-modification, microtubule-associated vesicular transport for pollen growth, GA and auxin synthesis were significantly changed. Hence, Tkn4 contributes to a function in the development of pollen and pollen tube and the regulation of phytohormones to participate in plant growth. These results provided a potential application value for agricultural improvement to enhance the rate of fruit set in tomato.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plantsci.2018.12.024DOI Listing

Publication Analysis

Top Keywords

gene tkn4
8
tomato knotted1-like
8
knotted1-like homeobox
8
pollen pollen
8
pollen tube
8
fruit set
8
pollen
7
overexpression knox
4
knox gene
4
tkn4
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!