Brachypodium distachyon (Brachypodium) is now well considered as being a suitable plant model for studying temperate cereal crops. Its cell walls are phylogenetically intermediate between rice and poaceae, with a greater proximity to these latter. By microscopic and biochemical approaches, this work gives an overview of the temporal and spatial distribution of cell wall polysaccharides in the grain of Brachypodium from the end of the cellularization step to the maturation of grain. Variation in arabinoxylan chemical structure and distribution were demonstrated according to development and different grain tissues. In particular, the kinetic of arabinoxylan feruloylation was shown occuring later in the aleurone layers compared to storage endosperm. Mixed linked β-glucan was detected in whole the tissues of Brachypodium grain even at late stage of development. Cellulose was found in both the storage endosperm and the outer layers. Homogalacturonan and rhamnogalacturonan I epitopes were differentially distributed within the grain tissues. LM5 galactan epitope was restricted to the aleurone layers contrary to LM6 arabinan epitope which was detected in the whole endosperm. A massive deposition of highly methylated homogalacturonans in vesicular bodies was observed underneath the cell wall of the testa t2 layer at early stage of development. At maturity, low-methylated homogalacturonans totally fulfilled the lumen of the t2 cell layer, suggesting pectin remodeling during grain development. Xyloglucans were only detected in the cuticle above the testa early in the development of the grain while feruloylated arabinoxylans were preferentially deposited into the cell wall of t1 layer. Indeed, the circumscribed distribution of some of the cell wall polysaccharides raises questions about their role in grain development and physiology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plantsci.2018.12.018 | DOI Listing |
Biophys J
January 2025
Department of Biology, New York University, New York, New York, 10003, USA. Electronic address:
The outer membrane is the defining structure of Gram-negative bacteria. We previously demonstrated that it is a major load-bearing component of the cell envelope and is therefore critical to the mechanical robustness of the bacterial cell. Here, to determine the key molecules and moieties within the outer membrane that underlie its contribution to cell envelope mechanics, we measured cell-envelope stiffness across several sets of mutants with altered outer-membrane sugar content, protein content, and electric charge.
View Article and Find Full Text PDFInt J Food Microbiol
January 2025
School of Life Science and Technology, Shandong Second Medical University, Weifang, Shandong, China. Electronic address:
Escherichia coli O157:H7 has caused many foodborne disease outbreaks and resulted in unimaginable economic losses. With the evolution of food consumption, people prefer natural preservatives. In this study, the natural agent harmane exhibited potential activity against E.
View Article and Find Full Text PDFInt J Med Microbiol
January 2025
Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan.
Cardiovascular diseases, primarily caused by atherosclerosis, are a major public health concern worldwide. Atherosclerosis is characterized by chronic inflammation and lipid accumulation in the arterial wall, leading to plaque formation. In this process, macrophages play a crucial role by ingesting lipids and transforming into foam cells, which contribute to plaque instability and cardiovascular events.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
School of Cardiovascular and Metabolic Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, SE5 9NU London, UK.
Cardiovascular disease (CVD) is the most prevalent cause of mortality and morbidity in the Western world. A common underlying hallmark of CVD is the plaque-associated arterial thickening, termed atherosclerosis. Although the molecular mechanisms underlying the aetiology of atherosclerosis remain unknown, it is clear that both its development and progression are associated with significant changes in the pattern of DNA methylation within the vascular cell wall.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea.
Morphophysiological dormancy (MPD) is considered one of the most primitive dormancy classes among seed plants. While extensive studies have examined the occurrence of endo-β-mannanase in seeds with physiological dormancy (PD) or non-dormancy, little is known about the activity of this enzyme in seeds with MPD. This study aimed to investigate the temporal and spatial patterns of endo-β-mannanase activity during dormancy break and germination.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!