This paper discovers rules-of-thumb on how the estimation precision for an incident source's azimuth-polar direction-of-arrival (ϕ,θ) depends on the number (L) of identical isotropic sensors spaced uniformly on an open sphere of radius R. This estimation's corresponding Cramér-Rao bounds (CRB) are found to follow these elegantly simple approximations, useful for array design: (i) For the azimuth arrival angle: 2π(R/λ)(σ/σ)2LMCRB(ϕ) sin(θ)≈(Le)+3→L→∞3, ∀(ϕ,θ); and (ii) for the polar arrival angle: 2π(R/λ)(σ/σ)2LMCRB(θ)≈3-(Le)→L→∞3, ∀(ϕ,θ). Here, M denotes the number of snapshots, λ refers to the incident signal's wavelength, and (σ/σ) symbolizes the signal-to-noise power ratio.

Download full-text PDF

Source
http://dx.doi.org/10.1121/1.5088592DOI Listing

Publication Analysis

Top Keywords

arrival angle
8
rules-of-thumb design
4
design uniform
4
uniform spherical
4
spherical array
4
array direction
4
direction finding-its
4
finding-its cramér-rao
4
cramér-rao bounds'
4
bounds' nonlinear
4

Similar Publications

Frequency diversity array-multiple-input multiple-output (FDA-MIMO) radar realizes an angle- and range-dependent system model by adopting a slight frequency offset between adjacent transmitter sensors, thereby enabling potential target localization. This paper presents FDA-MIMO radar-based rapid target localization via the reduction dimension root reconstructed multiple signal classification (RDRR-MUSIC) algorithm. Firstly, we reconstruct the two-dimensional (2D)-MUSIC spatial spectrum function using the reconstructed steering vector, which involves no coupling of direction of arrival (DOA) and range.

View Article and Find Full Text PDF

Bacterial adhesion in the gut is critical to evaluate their effectiveness as probiotics. Understanding the bacterial adhesion within the complex gut environment is challenging. This study explores the adhesion mechanisms and the adhesion potential of five selected bacterial strains (Escherichia coli, Lactiplantibacillus plantarum, Faecalibacterium duncaniae, Bifidobacterium longum, and Bifidobacterium longum subsp.

View Article and Find Full Text PDF

Best current practice in the analysis of dynamic contrast enhanced (DCE)-MRI is to employ a voxel-by-voxel model selection from a hierarchy of nested models. This nested model selection (NMS) assumes that the observed time-trace of contrast-agent (CA) concentration within a voxel, corresponds to a singular physiologically nested model. However, admixtures of different models may exist within a voxel's CA time-trace.

View Article and Find Full Text PDF

Localization accuracy in non-line-of-sight (NLOS) scenarios is often hindered by the complex nature of multipath propagation. Traditional approaches typically focus on NLOS node identification and error mitigation techniques. However, the intricacies of NLOS localization are intrinsically tied to propagation challenges.

View Article and Find Full Text PDF

A Coarse-Grained Simulation Approach for Protein Molecular Conformation Dynamics.

J Phys Chem A

January 2025

Computer Modelling Group, 3710 33 St NW, Calgary, Alberta T2L 2M1, Canada.

Coarse-grained molecular dynamics simulation is widely accepted for assessment of a large complex biological system, but it may also lead to a misleading conclusion. The challenge is to simulate protein structural dynamics (such as folding-unfolding behavior) due to the lack of a necessary backbone flexibility. This study developed a standard coarse-grained model directly from the protein atomic structure and amino acid coarse-grained FF (such as MARTINI FF v2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!