Amplitude effects on seismic velocities: How low can we go?

J Chem Phys

School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland.

Published: February 2019

α-quartz is one of the most important SiO polymorphs because it is the basis of very common minerals, especially for seabed materials with geoscientific importance. The elastic characterization of these materials is particularly relevant when the properties governing phonon and sound propagation are involved. These studies are especially interesting for oil exploration purposes. Recently, we published a new method that constitutes to the best of our knowledge the first attempt to recreate longitudinal and transversal perturbations in a simulation box to observe their propagation through the crystal by means of a set of descriptors [D. Melgar et al., J. Phys. Chem. C 122, 3006-3013 (2018)]. The agreement with the experimental S- and P-wave velocities was rather excellent. Thus, an effort has been undertaken to deepen the particularities of this new methodology. Here, bearing in mind this encouraging initial methodology-development progress, we deepen our knowledge of the particularities of this new methodology in presenting a systematic investigation of the implementation of the perturbation source. This includes new ways of creating the perturbation, as well as analyzing the possible effects the perturbation amplitude could have on the resultant velocities. In addition, different force fields were tested to describe the interatomic interactions. The lack of dependence of the seismic velocities on the way the perturbation is created and the perturbation amplitude, and the good agreement with the experimental results are the main reasons that allow the definition of this new methodology as robust and reliable. These qualities are consolidated by the physical behavior of the calculated velocities in the presence of vacancies and under stress. The development of this method opens up a new line of research of calculating seismic velocities for geophysically relevant materials in a systematic way, with full control not only on the sample features (composition, porosity, vacancies, stress, etc.) but also on the particularities of perturbation itself, as well as determining optimal system-response metrics.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5079972DOI Listing

Publication Analysis

Top Keywords

seismic velocities
12
agreement experimental
8
particularities methodology
8
perturbation well
8
perturbation amplitude
8
vacancies stress
8
velocities
6
perturbation
6
amplitude effects
4
effects seismic
4

Similar Publications

Physics-informed deep learning quantifies propagated uncertainty in seismic structure and hypocenter determination.

Sci Rep

January 2025

Japan Agency for Marine-Earth Science and Technology, 3173-25, Showa-machi, Kanazawa-ku, Yokohama, Kanagawa, 2360001, Japan.

Subsurface seismic velocity structure is essential for earthquake source studies, including hypocenter determination. Conventional hypocenter determination methods ignore the inherent uncertainty in seismic velocity structure models, and the impact of this oversight has not been thoroughly investigated. Here, we address this issue by employing a physics-informed deep learning (PIDL) approach that quantifies uncertainty in two-dimensional seismic velocity structure modeling and its propagation to hypocenter determination by introducing neural network ensembles trained on active seismic survey data, earthquake observation data, and the physical equation of wavefront movement.

View Article and Find Full Text PDF

Plate tectonics predicts that mountain ranges form by tectono-magmatic processes at plate boundaries, but high topography is often observed along passive margins far from any plate boundary. The high topography of the Scandes range at the Atlantic coast of Fennoscandia is traditionally assumed isostatically supported by variation in crustal density and thickness. Here we demonstrate, by our Silverroad seismic profile, that the constantly ~44 km thick crust instead is homogenous above the Moho, and Pn-velocity abruptly change from 7.

View Article and Find Full Text PDF

Dangerous rock masses in mountainous areas seriously threaten the construction and operation of engineering with potential disaster hazards, especially the unpredictability and sudden occurrence of rockfall, which poses a huge challenge. This paper presents a systematic risk assessment and disposal of high and steep giant dangerous rock masses, which can pose a serious threat to railway operation. Using comprehensive methods such as on-site investigation, limit equilibrium method, and simulation analysis of rockfall trajectory, the possibility and potential harm of collapse and rockfall of giant dangerous rock masses are analyzed and corresponding remediation measures are proposed.

View Article and Find Full Text PDF

Ambient noise cross-correlation has been widely used to observe post-earthquake temporal velocity variations. Comparative studies are essential for assessing seismic hazards and clarifying the relationship between velocity variation and magnitude. However, very few comparative studies by earthquake magnitude have been conducted, particularly for magnitudes smaller than 6.

View Article and Find Full Text PDF

Determining the extent of tunnel loosening zones is a crucial factor in establishing reasonable support parameters. Addressing the challenge of testing tunnel loosening zones, this study focused on the Dongmachang Tunnel No. 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!