Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Since the neurologists Hindmarsh and Rose improved the Hodgkin-Huxley model to provide a better understanding on the diversity of neural response, features like pole of attraction unfolding complex bifurcation for the membrane potential was still a mystery. This work explores the possible existence of chaotic poles of attraction in the dynamics of Hindmarsh-Rose neurons with an external current input. Combining with fractional differentiation, the model is generalized with the introduction of an additional parameter, the non-integer order of the derivative σ, and solved numerically thanks to the Haar Wavelets. Numerical simulations of the membrane potential dynamics show that in the standard case where the control parameter σ=1, the nerve cell's behavior seems irregular with a pole of attraction generating a limit cycle. This irregularity accentuates as σ decreases (σ=0.9 and σ=0.85) with the pole of attraction becoming chaotic.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5083180 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!