We consider a network of coupled oscillators embedded in the surface of a sphere with nonlocal coupling strength and heterogeneous phase lags. A nonlocal coupling scheme with heterogeneous phase lags that allows the system to be solved analytically is suggested and the main effects of heterogeneity in the phase lags on the existence and stability of steady states are analyzed. We explore the stability of solutions along the Ott-Antonsen invariant manifold and present a complete bifurcation diagram for stationary patterns including the coherent, incoherent, and modulated drift states as well as chimera state. The stability analysis shows that a continuum of uniform drift states and the modulated drift state could become stable only due to the heterogeneity of the phase lags and that the chimera state is bifurcated from the modulated drift state. Our theoretical results are verified by using the direct numerical simulations of the model system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5079472 | DOI Listing |
Phys Chem Chem Phys
January 2025
Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany.
Within the framework of surface-adsorbate interactions relevant to chemical reactions of spent nuclear fuel, the study of actinide oxide systems remains one of the most challenging tasks at both the experimental and computational levels. Consequently, our understanding of the effect of their unique electronic configurations on surface reactions lags behind that of d-block oxides. To investigate the surface properties of this system, we present the first infrared spectroscopy analysis of carbon monoxide (CO) interaction with a monocrystalline actinide oxide, UO(111).
View Article and Find Full Text PDFHeliyon
January 2025
Department of Mathematics, Faculty of Science, Zagazig University, P.O. Box 44519, Zagazig, Egypt.
This investigation represents porothermoelastic asphalt material with thermal shock due to multi-phase lag model of thermoelasticity. By applying proper boundary conditions to the normal mode approach, we were able to achieve the precise solution. The graphs provide numerical results for the physical quantities supplied in physical domain.
View Article and Find Full Text PDFSci Rep
January 2025
Grant Institute, School of Geosciences, University of Edinburgh, James Hutton Road, Edinburgh, EH9 3FE, UK.
Glendonites (from the precursor of ikaite, CaCO.6HO) preferentially precipitate within sediments in cold waters (- 2 to 7°C) via either organotrophic or methanogenic sulphate reduction. Here, we report the first occurrence of possible glendonites associated with the end Permian mass extinction in the earliest Triassic (ca.
View Article and Find Full Text PDFSci Rep
December 2024
School of Resources & Safety Engineering, Central South University, Changsha, 410083, Hunan, China.
To explore the mechanism of water inrush from the mine roof strata, a series of seepage-acoustic emission (SAE) experiments on red sandstone disc samples were carried out. The effects of the height to diameter ratio (H/D) and pore pressure on the mechanical, hydraulic and crack propagation properties of red sandstones were investigated. Test results show that, the peak load of rock samples declines with the decreasing H/D and increasing pore pressure.
View Article and Find Full Text PDFJ Med Internet Res
December 2024
Department of Artificial Intelligence, The Catholic University of Korea, Bucheon-Si, Republic of Korea.
Background: The number of confirmed COVID-19 cases is a crucial indicator of policies and lifestyles. Previous studies have attempted to forecast cases using machine learning techniques that use a previous number of case counts and search engine queries predetermined by experts. However, they have limitations in reflecting temporal variations in queries associated with pandemic dynamics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!