A Hybrid Path-Planning Strategy for Mobile Robots with Limited Sensor Capabilities.

Sensors (Basel)

Núcleo de Especialização em Robótica-NERO, Departamento de Engenharia Elétrica-DEL, Universidade Federal de Viçosa-UFV, Viçosa MG 36570-900, Brazil.

Published: March 2019

This paper introduces a strategy for the path planning problem for platforms with limited sensor and processing capabilities. The proposed algorithm does not require any prior information but assumes that a mapping algorithm is used. If enough information is available, a global path planner finds sub-optimal collision-free paths within the known map. For the real time obstacle avoidance task, a simple and cost-efficient local planner is used, making the algorithm a hybrid global and local planning solution. The strategy was tested in a real, cluttered environment experiment using the Pioneer P3-DX and the Xbox 360 kinect sensor, to validate and evaluate the algorithm efficiency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427604PMC
http://dx.doi.org/10.3390/s19051049DOI Listing

Publication Analysis

Top Keywords

limited sensor
8
hybrid path-planning
4
path-planning strategy
4
strategy mobile
4
mobile robots
4
robots limited
4
sensor capabilities
4
capabilities paper
4
paper introduces
4
introduces strategy
4

Similar Publications

The optimal method for three-dimensional thermal imaging within cells involves collecting intracellular temperature responses while simultaneously obtaining corresponding 3D positional information. Current temperature measurement techniques based on the photothermal properties of quantum dots face several limitations, including high cytotoxicity and low fluorescence quantum yields. These issues affect the normal metabolic processes of tumor cells.

View Article and Find Full Text PDF

Construction of an electrochemical sensor for the detection of methyl parathion with three-dimensional graphdiyne-carbon nanotubes.

Mikrochim Acta

January 2025

CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.

To enhance the application performance of graphdiyne (GDY) in electrochemical sensing, carbon nanotubes (CNTs) were grown in situ to construct three-dimensional nanoarchitectures of GDY-CNTs composites. GDY-CNTs showed superior electrochemical properties and detection response to MP when compared with GDY, as the in situ growth of CNTs significantly increased the electrode surface area and enhanced the electron transfer process. GDY-CNTs were successfully used to construct electrochemical sensors for methyl parathion (MP).

View Article and Find Full Text PDF

Fe, Ni, and Cu doped ceria nanoparticles (CeNPs) were prepared with a simple and one-pot hydrothermal synthesis method. We investigated the chemiluminescence (CL) interaction between these NPs and rhodamine B (Rh B) and found that the highest CL intensity was related to the Rh B- Cu doped CeNPs. We assigned that to the higher catalytic property of Cu doped NPs compared to the others.

View Article and Find Full Text PDF

Recent advances in electrochemical sensing and remediation technologies for ciprofloxacin.

Environ Sci Pollut Res Int

January 2025

Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India.

Ciprofloxacin (CIP) is an extensively used broad-spectrum, fluoroquinolone antibiotic used for treating diverse bacterial infections. Effluent treatment plants (ETPs) worldwide lack technologies to detect or remediate antibiotics. CIP reaches the aquatic phase primarily due to inappropriate disposal practices, lack of point-of-use sensing, and preloaded activated charcoal filter at ETPs.

View Article and Find Full Text PDF

Chemotherapy is a crucial cancer treatment, but its effectiveness requires precise monitoring of drug concentrations in patients. This study introduces an innovative electrochemical strip sensor design to detect and continuously monitor methotrexate (MTX), a key chemotherapeutic drug. The sensor is crafted through an eco-friendly synthesis process that produces porous reduced graphene oxide (PrGO), which is then integrated with gold nanocomposites and polypyrrole (PPy) to boost the performance of a screen-printed carbon electrode (SPCE).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!