Point-of-care diagnostics will rely upon the development of low-cost, noncomplex, and easily integrated systems in order to examine biological samples such as blood and urine obtained from the patient. The development of metal ion sensors is a subject of significant relevance for physiological samples. The level of different blood electrolytes, mainly H⁺, Na⁺, K⁺ and Cl is considerably used to monitor irregular physiologies. The particular challenge in biosensing, and in fact for any other sensor, is signal differentiation between non-specifically bound material and the specific detecting of the target molecule/ion. The biosensors described in this paper are fabricated by a holographic recording of surface relief structures in a photopolymer material. The surface structures are modified by coating with either dibenzo-18-crown-6 (DC) or tetraethyl 4-tert-butylcalix[4]arene (TBC), which are embedded in a polymer matrix. Interrogation of these structures by light allows indirect measurement of the concentration of the analyte. The influence of polymer matrices with different porosities, plasticised polyvinyl chloride (PVC) and a sol-gel matrix, on the performance of the sensors for detection of K⁺ and Na⁺ is examined. Here we demonstrate a proof of concept that by using a matrix with higher porosity one can increase the sensitivity of the sensor. The results showed that the DC sensing layer provides a selective response to K⁺ over Na⁺ and the TBC modified grating is more responsive to Na⁺ over K⁺. The sensor responds to K⁺ and Na⁺ within the physiological concentration ranges.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427520 | PMC |
http://dx.doi.org/10.3390/s19051026 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!