This study evaluated if adaptation to environmental heat stress can counteract the negative effects of hyperthermia on complex motor performance. Thirteen healthy, trained males completed 28 days of heat acclimation with 1 h daily exercise exposure to environmental heat (39.4 ± 0.3 °C and 27.0 ± 1.0% relative humidity). Following comprehensive familiarization, the participants completed motor-cognitive testing before acclimation, as well as after 14 and 28 days of training in the heat. On all three occasions, the participants were tested, at baseline (after ~15 min passive heat exposure) and following exercise-induced hyperthermia which provoked an increase in core temperature of 2.8 ± 0.1 °C (similar across days). Both cognitively dominated test scores and motor performance were maintained during passive heat exposure (no reduction or difference between day 0, 14, and 28 compared to cool conditions). In contrast, complex motor task performance was significantly reduced in hyperthermic conditions by 9.4 ± 3.4% at day 0; 15.1 ± 5.0% at day 14, and 13.0 ± 4.8% at day 28 (all < 0.05 compared to baseline but not different across days). These results let us conclude that heat acclimation cannot protect trained males from being negatively affected by hyperthermia when they perform complex tasks relying on a combination of cognitive performance and motor function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427404 | PMC |
http://dx.doi.org/10.3390/ijerph16050716 | DOI Listing |
Cell Res
December 2024
School of Life Science and Technology & Shanghai Clinical Research and Trial Center, ShanghaiTech University, Shanghai, China.
J Physiol
December 2024
Faculty of Biology, University of Białystok, Białystok, Poland.
Low basal metabolic rate (BMR) is a risk factor for obesity, whereas elevation of non-shivering thermogenesis (NST) is a promising means to combat obesity. Because heat generated by NST covers thermogenic needs not fulfilled by BMR, one can expect the presence of a negative relationship between both parameters. Understanding of the mechanisms underlying this relationship is therefore important for interpretation of the results of translational experiments and the development of anti-obesity treatments.
View Article and Find Full Text PDFJ Therm Biol
December 2024
Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, 7491, Norway; Department of Biology and Environmental Sciences, Kristineberg Center, University of Gothenburg, Fiskebäckskil, Sweden.
Climate warming with associated heat waves presents a concerning challenge for ectotherms such as fishes. During heatwaves, the ability to rapidly acclimate can be crucial for survival. However, surprisingly little is known about how different species and life stages vary in their acclimation dynamics, including the magnitude of change in thermal tolerance through acclimation (i.
View Article and Find Full Text PDFCell Stress Chaperones
December 2024
CONAHCYT- Centro de Investigaciones Biológicas del Noroeste, Mar Bermejo 195, Playa Palo de Santa Rita, La Paz, Baja California Sur 23090, Mexico. Electronic address:
Understanding the molecular mechanisms underlying thermal acclimation and heat shock responses (HSR) in marine ectotherms is critical for assessing their adaptive capacity in the context of climate change and climate extremes. This study examines the expression dynamics of heat shock proteins (HSPs) in the scallop Nodipecten subnodosus, shedding light on their role in thermal adaptation. Our analysis revealed the presence of several conserved functional signatures in N.
View Article and Find Full Text PDFJ Exp Biol
December 2024
Université du Québec à Rimouski, Département de biologie, Rimouski, Québec, G5L3A1, Canada.
Identification of physiological processes setting thermal tolerance limits is essential to describe adaptive response to temperature changes. We use the North American Daphnia pulex complex, which makes a remarkable model for comparative physiology as it is composed of clones differing in heat tolerance, ploidies and with a wide geographic distribution. The fatty acid composition of 18 diploid and triploid D.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!