The control of agricultural pests is key to maintain economically viable crops. Increasing environmental awareness, however, is leading to more restrictive European policies regulating the use of certain pesticides due to their impact on human health and the soil system. Given this context, we evaluated the efficacy of three alternatives to the soil fumigant 1,3-dichloropropene (1,3-D), which is currently banned in Europe: two non-fumigant nematicides [oxamyl (OX) and fenamiphos (FEN)] and the soil fumigant dimethyl disulfide (DMDS). We analysed the efficiency of these pesticides against root-knot nematodes and soil fungal pathogens (determined by qPCR) as well as the soil biological quality after treatments application (estimated by enzyme activities). Among treatments, 1,3-D and DMDS significantly reduced nematode populations. FEN was more effective in sandy soil, while OX had no effect in any soil. OX and FEN had no effect on fungal pathogens, whereas DMDS reduced the abundance of Rhizoctonia solani and Fusarium solani at the root level in clay-loam soil. Soil quality decreased after treatment application but then recovered throughout the experiment, indicating the possible dissipation of the pesticides. Our findings support DMDS as a potential sustainable alternative for controlling root-knot nematodes and fungal pathogens due to its effectiveness in both studied soils, although its negative impact on soil biological quality in sandier soils must be taken into account. Main finding of the work. DMDS is a reliable alternative to 1,3-D for controlling agricultural pest but its inhibitory effect on soil enzyme activities varied according to the soil characteristics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2019.01.042DOI Listing

Publication Analysis

Top Keywords

fungal pathogens
16
soil
13
root-knot nematodes
12
controlling root-knot
8
nematodes fungal
8
soil quality
8
soil fumigant
8
soil biological
8
biological quality
8
enzyme activities
8

Similar Publications

Genomic data on from the African continent are currently lacking, resulting in the region being under-represented in global analyses of infection (CDI) epidemiology. For the first time in Nigeria, we utilized whole-genome sequencing and phylogenetic tools to compare isolates from diarrhoeic human patients (=142), livestock (=38), poultry manure (=5) and dogs (=9) in the same geographic area (Makurdi, north-central Nigeria) and relate them to the global population. In addition, selected isolates were tested for antimicrobial susceptibility (=33) and characterized by PCR ribotyping (=53).

View Article and Find Full Text PDF

Detection of low-abundance mutations for the early discovery of fungicide-resistant fungal pathogens is highly demanded, but remains challenging. Herein, we developed a dual-recognition strategy, termed PARPA, involving s Argonaute (pfAgo)-mediated elimination of wild-type fungal genes and CRISPR/Cas12a-based amplicon recognition. This assay can detect fungicide-resistant at relative abundances as low as 0.

View Article and Find Full Text PDF

Purpose: To evaluate the performance of the Duke clinical criteria of the European Society of Cardiology (ESC; 2015 and 2023 versions) and the 2023 International Society for Cardiovascular Infectious Diseases (ISCVID) in diagnosing infective endocarditis (IE) among patients with bacteraemia/candidaemia by pathogens introduced for the first time as typical microorganisms by ISCVID.

Methods: Retrospective study.

Setting: This study included adult patients with bacteraemia/candidaemia by such pathogens (coagulase negative staphylococci, Abiotrophia spp.

View Article and Find Full Text PDF

Background: Lung transplantation is the ultimate treatment option for patients with advanced cystic fibrosis. Chronic colonization of these recipients with multidrug-resistant (MDR) pathogens may constitute a risk factor for an adverse outcome. We sought to analyze whether colonization with MDR pathogens, as outlined in the German classification of multiresistant Gram-negative bacteria (MRGN), was associated with the success of lung transplantation.

View Article and Find Full Text PDF

Exploring the challenges of RNAi-based strategies for crop protection.

Adv Biotechnol (Singap)

July 2024

State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.

RNA silencing (or RNA interference, RNAi) initiated by double-stranded RNAs is a conserved mechanism for regulating gene expression in eukaryotes. RNAi-based crop protection strategies, including host-induced gene silencing (HIGS), spray-induced gene silencing (SIGS) and microbe-induced gene silencing (MIGS), have been successfully used against various pests and pathogens. Here, we highlight the challenges surrounding dsRNA design, large-scale production of dsRNA and dsRNA delivery systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!