The saltcedar shrub Tamarix nilotica grows as a weed in the Arava region of Israel. This weed is commonly found in cultivated fields naturally infested with Fusarium oxysporum f. sp. radicis-lycopersici, the causal agent of tomato crown and root rot. Young bushes, 20 to 40 cm tall, were randomly uprooted from different fields. The roots were cut into segments which were placed on Fusarium-selective medium. Although the plants did not show any symptoms of disease, the roots of the shrub were colonized by the pathogen. The incidence of infected saltcedar plants and level of root colonization by F. oxysporum f. sp. radicis-lycopersici decreased with increasing distance of the sampling location from a tomato field infected with crown and root rot. F. oxysporum f. sp. radicis-lycopersici was also isolated from chaff of inflorescence samples taken from mature T. nilotica shrubs. Identity of the pathogen isolates obtained from T. nilotica roots and chaff samples was verified by pathogenicity and vegetative compatibility tests. Roots of T. nilotica plants sown under greenhouse conditions in soil naturally infested with F. oxysporum f. sp. radicis-lycopersici became colonized by the pathogen. Uprooting and removing saltcedar plants throughout the season from fields not cultivated with tomatoes lowered the inoculum density of F. oxysporum f. sp. radicis-lycopersici in the soil from 611 to 6 and from 176 to 10 CFU/g of soil in the 1998-99 and 1999-2000 growing seasons, respectively. These results demonstrate that T. nilotica may contribute to the buildup of the pathogen populations in the absence of a susceptible host. Colonization of saltcedar by F. oxysporum f. sp. radicis-lycopersici is an additional mechanism for survival of this pathogen in the fields and for dissemination through the spread of infested seed or chaff of T. nilotica.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PDIS.2001.85.7.735 | DOI Listing |
Metabolites
January 2025
Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, Tlaxcala C.P. 90700, Mexico.
: Jacq. (HP) is widely recognized in traditional medicine for its antimicrobial properties, which are attributed to secondary metabolites such as phenolic compounds, alkaloids, and terpenes. f.
View Article and Find Full Text PDFMicroorganisms
December 2024
Laboratory of Plant Pathology, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece.
Endophytic microbes in medicinal plants often possess beneficial traits for plant health. This study focuses on the bacterial endophyte strain B.L.
View Article and Find Full Text PDFJ Fungi (Basel)
August 2024
Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China.
Fusarium crown and root rot (FCRR), caused by f. sp. (FORL), is an economically important disease that affects tomatoes worldwide and has become more prevalent in China in recent years.
View Article and Find Full Text PDFJ Agric Food Chem
August 2024
Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, People's Republic of China.
Fusarium crown and root rot (FCRR) has emerged as a highly destructive soil-borne disease, posing a significant threat to the safe cultivation of tomatoes in recent years. The pathogen of tomato FCRR is f. sp.
View Article and Find Full Text PDFCurr Microbiol
April 2024
Laboratory of Enzymatic Engineering and Microbiology, University of Sfax, National Engineering School of Sfax, B.P. 1173-3038, Sfax, Tunisia.
The present work aims to quantitatively and qualitatively monitor the production of lipopeptide mixtures by Bacillus methylotrophicus DCS1 strain in Landy medium and to investigate the antifungal activities of DCS1 strain and its produced lipopeptides. The in vitro activities were tested by the direct confrontation and agar well diffusion methods, while the in vivo study was carried out in order to test the efficiency of DCS1 bacterial suspension in the control of Fusarium wilt in tomato plants. Identification of lipopeptides by mass spectrometry (LC/MSD-TOF) showed that lipopeptide isoforms produced during the first 24 h and 48 h of fermentation are identical, belonging to bacillomycin D and fengycins A and B homologues with a difference in the yield of production.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!