The recently described pathogen Erwinia pyrifoliae, isolated from Nashi pear fruit trees in Korea, resembles the fire blight pathogen Erwinia amylovora in some of its properties. The two pathogens were classified into different species by DNA hybridization kinetics and microbiological criteria. From the nucleotide sequences of the 16S rRNA and the internal transcribed spacer (ITS) region as well as extracellular polysaccharide (EPS)-encoding genes, polymerase chain reaction (PCR) primers were designed that specifically detect E. pyrifoliae but not the fire blight pathogen Erwinia amylovora, and these primers were also applied to identify E. pyrifoliae in necrotic plant material. The genomes of several strains were digested with the restriction enzyme SpeI, and the DNA fragments were analyzed by pulsed-field gel electrophoresis (PFGE). Three groups of patterns could be distinguished for the isolated E. pyrifoliae strains, all different from various E. amylovora strains, which produce a relatively homogeneous PFGE pattern after SpeI digests. Typical fire blight host plants were assayed in a growth chamber or an experimental field for their susceptibility to E. pyrifoliae. A strong preference was found for pear varieties, whereas apple, cotoneaster, hawthorn, or raspberry rarely produced necrotic symptoms. E. pyrifoliae was readily detected in samples from pear orchards in South Korea during 1995 to 1998; however, the Asian pear pathogen was not recovered in necrotic plant tissue from 1999 and 2000.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS.2001.85.11.1183DOI Listing

Publication Analysis

Top Keywords

pathogen erwinia
12
fire blight
12
erwinia pyrifoliae
8
asian pear
8
pear pathogen
8
blight pathogen
8
erwinia amylovora
8
necrotic plant
8
pyrifoliae
7
pear
5

Similar Publications

Pests and diseases have caused significant problems since the domestication of crops, resulting in economic loss and hunger. To overcome these problems, synthetic pesticides were developed to control pests; however, there are significant detrimental side effects of synthetic pesticides on the environment and human health. There is an urgent need to develop safer and more sustainable pesticides.

View Article and Find Full Text PDF

Optimization of the large-scale production for Erwinia amylovora bacteriophages.

Microb Cell Fact

December 2024

Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea.

Background: Fire blight, caused by Erwinia amylovora, poses a significant threat to global agriculture, with antibiotic-resistant strains necessitating alternative solutions such as phage therapy. Scaling phage therapy to an industrial level requires efficient mass-production methods, particularly in optimizing the seed culture process. In this study, we investigated large-scale E.

View Article and Find Full Text PDF

The bacterial pathogen causes fire blight on rosaceous plants, including apples and their wild relatives. The pathogen uses the type III secretion pathogenicity island to inject effector proteins, such as Eop1, into host plants, leading to disease phenotypes in susceptible genotypes. In contrast, resistant genotypes exhibit quantitative resistance associated with genomic regions and/or R-gene-mediated qualitative resistance to withstand the pathogen.

View Article and Find Full Text PDF

Phytocytokines belong to a category of small secreted peptides with signaling functions that play pivotal roles in diverse plant physiological processes. However, due to low levels of sequence conservation across plant species and poorly understood biological functions, the accurate detection and annotation of corresponding genes is challenging. The availability of a high-quality apple (Malus domestica) genome has enabled the exploration of five phytocytokine gene families, selected on the basis of their altered expression profiles in response to biotic stresses.

View Article and Find Full Text PDF

The aim of this study was to evaluate the antimicrobial properties and profile of bioactive compounds from mesocarp, peel and leaves of four autochthonous apple cultivars against human pathogens, Escherichia coli, Staphylococcus aureus and Bacillus subtilis and the apple pathogen Erwinia amylovora by direct detection on HPTLC plates and subsequent chemometric analysis. UHPLC Q-ToF MS was used for detailed characterization of the bioactive compounds with antimicrobial properties. Leaf extracts showed the highest antibacterial activity against all bacterial strains, followed by peel extracts, while the mesocarp extracts showed only weak and selective inhibition zones for E.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!