First Report of Dieback Caused by Verticillium dahliae on Blighia sapida in the United States.

Plant Dis

Plant Pathology, Department of Agriculture, Gainesville, FL 32608.

Published: January 2002

Mature akee trees, Blighia sapida K. Koenig, in a local south Florida commercial orchard had wilt and dieback symptoms during spring 1999. A fungus isolated from the gray xylem root tissue on V8 agar was identified as Verticillium dahliae Klebahn at the Division of Plant Industry of the Florida Department of Agriculture and Consumer Services. Twenty akee seedlings were transplanted into 3.85-liter plastic pots and grown in a greenhouse at a daytime temperature of 28°C and nighttime temperature of 23°C. When plants were approximately 25 cm high, a 15-cm knife was used to sever roots in the four quadrants of each pot. Inoculum was made from a 2-week-old culture of V. dahliae on V8 agar and blended with 160 ml of sterile water, and 15 ml of this slurry was poured into the disturbed soil of each of 10 treated plants. A plate of uninoculated V8 agar was applied, as above, to 10 control plants. Plants were kept in the greenhouse. After 6 weeks, inoculated plants showed symptoms of leaf wilt, dieback and plant death. No symptoms were seen on control plants. V. dahliae was isolated directly from the gray vascular tissue of inoculated plants. The inoculation experiment was repeated three times, fulfilling Koch's postulates. To our knowledge, this is the first report of Verticillium dieback on B. sapida in the United States.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS.2002.86.1.74CDOI Listing

Publication Analysis

Top Keywords

verticillium dahliae
8
blighia sapida
8
sapida united
8
united states
8
wilt dieback
8
control plants
8
inoculated plants
8
plants
7
report dieback
4
dieback caused
4

Similar Publications

Rac/Rop proteins, a kind of unique small GTPases in plants, play crucial roles in plant growth and development and in response to abiotic and biotic stresses. However, it is poorly understood whether cotton Rac/Rop protein genes are involved in mediating cotton resistance to Verticillium dahliae. Here, we focused on the function and mechanism of cotton Rac/Rop gene GhRac9 in the defense response to Verticillium dahliae infection.

View Article and Find Full Text PDF

Background: The gene family of myelomatosis (MYC), serving as a transcription factor in the jasmonate (JA) signaling pathway, displays a significant level of conservation across diverse animal and plant species. Cotton is the most widely used plant for fiber production. Nevertheless, there is a paucity of literature reporting on the members of MYCs and how they respond to biotic stresses in cotton.

View Article and Find Full Text PDF

Groundbreaking Technologies and the Biocontrol of Fungal Vascular Plant Pathogens.

J Fungi (Basel)

January 2025

Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008 Granada, Spain.

This review delves into innovative technologies to improve the control of vascular fungal plant pathogens. It also briefly summarizes traditional biocontrol approaches to manage them, addressing their limitations and emphasizing the need to develop more sustainable and precise solutions. Powerful tools such as next-generation sequencing, meta-omics, and microbiome engineering allow for the targeted manipulation of microbial communities to enhance pathogen suppression.

View Article and Find Full Text PDF

CEF642 as a Promising Biocontrol Agent for Cotton Disease Control.

J Agric Food Chem

January 2025

State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China.

Endophytic fungi live in healthy plant tissues and organs and are a major source of natural bioactive compounds. In this study, we found that an endophytic fungus, CEF642, isolated from the healthy cotton roots, suppressed by up to 53% after 15 days in a confrontation culture. Genome sequencing of CEF642 and mass spectrometry study of its metabolites were used to identify its primary antagonists.

View Article and Find Full Text PDF

In the coevolution of cotton and pathogenic fungi, resistant cotton varieties lead to an escalation in the virulence of Verticillium dahliae.

Ecotoxicol Environ Saf

January 2025

State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji 831100, China. Electronic address:

Verticillium dahliae is highly prone to pathogenic differentiation and influenced by host cotton's resistance. To better understand the mechanisms of this phenomenon, we applied the host selective pressures of resistant and susceptible cotton varieties on V. dahliae strain Vd076 within an artificial cotton Verticillium wilt nursery and greenhouse.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!