Effects of Fe(III)/sulfate (Fe/S) ratio on organic carbon oxidation kinetics and microbial ecology of a novel Fe(III)-dosed anaerobic wastewater treatment system were investigated in this study. Fixed-film batch bioreactors under three Fe/S molar ratios (1, 2, and 3) yielded COD oxidation rates that increased with the Fe/S ratio, and estimated Michaelis-Menten model parameters V ranging in 0.47-1.09 mg/L⋅min and K in 2503-3267 mg/L. Both iron and sulfate reducing bacteria contributed to the organics oxidation, and the produced sludge materials contained both biomass (32-45 wt.%) and inorganic precipitates from biogenic ferrous iron and sulfide (68-55 wt.%). Spectroscopic and chemical elemental analyses indicated that the inorganic fraction of the sludge materials contained both FeS and FeS, and had Fe/S stoichiometric ratios close to 1. Microbiological analyses of the biofilm samples revealed that the major putative iron- and sulfate reducers were Geobacter sp. and Desulfovibrio sp. along with noticeable N-fixing and fermentative bacteria. The COD oxidation rate had a positive correlation with the relative abundance of iron reducers, and both increased with the Fe/S ratio. A conceptual framework was proposed to illustrate the effects of Fe/S ratio on organics oxidation rate, microbial ecology and their interplays.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2019.02.062DOI Listing

Publication Analysis

Top Keywords

fe/s ratio
20
microbial ecology
12
effects fe/s
8
kinetics microbial
8
feiii-dosed anaerobic
8
anaerobic wastewater
8
wastewater treatment
8
treatment system
8
cod oxidation
8
increased fe/s
8

Similar Publications

Enhanced removal of sulfonamide antibiotics in water using high-performance S-nZVI/BC derived from rice straw.

J Environ Manage

January 2025

Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, School of Life Science, Jinggangshan University, Ji'an, 343009, China. Electronic address:

Sulfonamide antibiotics (SAs) are widely used in the biomedical field but pose an environmental risk as ecotoxic pollutants. Developing eco-friendly methods to degrade SAs into harmless compounds is crucial. In this work, biochar (BC) was prepared from rice straw via pyrolysis and used to support S-nZVI, thereby forming the S-nZVI/BC composites.

View Article and Find Full Text PDF

Different contributions of crystalline and non-crystalline iron (hydr)oxides on the mobilization and thionation of diphenylarsinic acid in a flooded paddy soil.

J Hazard Mater

December 2024

Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241002, China. Electronic address:

Iron reduction impacts the mobilization and thionation of diphenylarsinic acid (DPAA) in soil, but the contribution of crystalline and non-crystalline iron remains unknown. A paddy soil deficient in non-crystalline iron (P-Fe), crystalline and non-crystalline iron (P-Fe) were incubated with sulfate-plus-lactate, and the results were compared with paddy soil (P) in our previous study. For treatments without ferrous sulfide (FeS) precipitation, the solution-to-solid ratio (R) of DPAA increased slightly and dramatically with iron reduction, respectively, for P-Fe and P, suggesting that the reduction of non-crystalline iron contributes more to DPAA mobilization than crystalline iron.

View Article and Find Full Text PDF

Multiple effects of carbon, sulfur and iron on microbial mercury methylation in black-odorous sediments.

Environ Res

December 2024

School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, China. Electronic address:

Black-odorous sediments provide ideal conditions for microbial mercury methylation. However, the multiple effects of carbon, sulfur, and iron on the microbial methylmercury of mercury in black-odorous sediments remains unclear. In this study, we conducted mercury methylation experiments using sediments collected from organically contaminated water bodies, as well as black-odorous sediments simulated in the laboratory.

View Article and Find Full Text PDF

Friction Mechanism of Sulfur-Containing Lubricant Additives Confined between Fe(100) Substrates.

Langmuir

September 2024

State Key Laboratory of Mechanical Transmission for Advanced Equipment, Chongqing University, Chongqing 400044, China.

Sulfur-containing lubricant additives can chemically react with metal surfaces under extreme conditions, such as high temperature and high pressure, forming protective films on the surfaces. However, the formation mechanisms and the friction-reducing and antiwear properties of these films remain unclear. In this study, we investigated the friction process of sulfur-containing additives confined between two iron surfaces using reactive molecular dynamics simulations.

View Article and Find Full Text PDF

TetrabromobisphenolA is a well-known member of the brominated flame retardant group and is widely used as a highly effective fire-retardant additive in electronic and electrical equipment. TBBPA is commonly found in various environmental sources and can be harmful to human health. This study presents a simple approach to preparing a magnetic nanocomposite, offering a straightforward method that results in consistent quality and low resource consumption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!