A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Adsorption of organic matter in oil sands process water (OSPW) by carbon xerogel. | LitMetric

Adsorption of organic matter in oil sands process water (OSPW) by carbon xerogel.

Water Res

Department of Civil and Environmental Engineering, University of Alberta, T6G 1H9, Canada. Electronic address:

Published: May 2019

This study illustrated the preparation, characterization and the use of carbon xerogel materials for the adsorption of acid-extractable fractions (AEF) and naphthenic acids (NAs) from oil sands process water (OSPW). Adsorption results demonstrated that the mesoporous carbonaceous material can successfully be used to adsorb persistent and toxic organic contaminants from OSPW. Carbon xerogel (CX) made at pH 5.5 showed high surface area (573 m/g) and removed a larger amount of AEF than CX made at pH 6.9 (391 m/g). The adsorption equilibrium was reached by 24 h for both AEF and classical NAs. 74.6% of AEF and 88.8% of classical NAs were removed by CX5.5 during 24-h adsorption. With respect to classical NAs, a larger the carbon number resulted in higher NA removal. Carbon number had more influence on NA removal when compared with hydrogen deficiency resulting from rings or unsaturated bonding formation (-Z number). The equilibrium adsorption capacity was found to be 15 mg AEF/g and 7.8 mg NAs/g for CX5.5. Adsorption of AEF and classical NAs onto CX5.5 followed pseudo-second order kinetics. With respect to diffusion of AEF and NAs, there were three distinct diffusion regions: bulk, film and pore. Pore diffusion had the lowest rate constant in all cases analyzed and was thus the rate limiting step. The results of this study showed that a mesoporous carbonaceous material such as CX may have the potential to be utilized in a fixed bed adsorption/filtration systems for continuous treatment of OSPW or as a semi-passive treatment method in pit lakes for the removal of organic constituents from OSPW.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2019.01.053DOI Listing

Publication Analysis

Top Keywords

classical nas
16
carbon xerogel
12
oil sands
8
sands process
8
process water
8
water ospw
8
ospw carbon
8
mesoporous carbonaceous
8
carbonaceous material
8
aef classical
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!