Traumatic brain injury (TBI) affects at least 3 M people annually. In humans, repetitive mild TBI (rmTBI) can lead to increased impulsivity and may be associated with chronic traumatic encephalopathy. To better understand the relationship between repetitive TBI (rTBI), impulsivity and neuropathology, we used CHIMERA (Closed-Head Injury Model of Engineered Rotational Acceleration) to deliver five TBIs to rats, which were continuously assessed for trait impulsivity using the delay discounting task and for neuropathology at endpoint. Compared to sham controls, rats with rTBI displayed progressive impairment in impulsive choice. Histological analyses revealed reduced dopaminergic innervation from the ventral tegmental area to the olfactory tubercle, consistent with altered impulsivity neurocircuitry. Consistent with diffuse axonal injury generated by CHIMERA, white matter inflammation, tau immunoreactivity and degeneration were observed in the optic tract and corpus callosum. Finally, pronounced grey matter microgliosis was observed in the olfactory tubercle. Our results provide insight into the mechanisms by which rTBI leads to post-traumatic psychiatric-like symptoms in a novel rat TBI platform.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.expneurol.2019.02.012 | DOI Listing |
Eur J Nucl Med Mol Imaging
December 2024
Department of Nuclear Medicine, The First Medical Centre, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.
Purpose: This study aimed to investigate the correlation between subcortical tau-positron emission tomography (Tau-PET) and plasma glial fibrillary acidic protein (GFAP) levels and cognitive function in participants with cognitively unimpaired (CU), mild cognitive impairment (MCI) and Alzheimer's disease (AD) conditions.
Methods: 105 participants with amyloid (Aβ) PET and Tau-PET scans were enrolled. Region of interest (ROI) level and voxel-wise comparisons were performed between those three groups.
Hum Brain Mapp
December 2024
Department of Psychology, Stockholm University, Stockholm, Sweden.
The human brain is organized as a hierarchical global network. Functional connectivity research reveals that sensory cortices are connected to corresponding association cortices via a series of intermediate nodes linked by synchronous neural activity. These sensory pathways and relay stations converge onto central cortical hubs such as the default-mode network (DMN).
View Article and Find Full Text PDFFront Neural Circuits
November 2024
Department of Physiology, Kochi Medical School, Kochi University, Kochi, Japan.
Olfactory behavior is highly plastic, and the olfactory tubercle (OT), a component of the olfactory cortex and ventral striatum, includes anteromedial (amOT) and lateral (lOT) domains with roles in attractive and aversive olfactory behavioral learning, respectively. However, the underlying properties of synaptic plasticity in these domains are incompletely understood. Synaptic plasticity is regulated by multiple signals including synaptic inputs and neuromodulators.
View Article and Find Full Text PDFCogn Neurodyn
October 2024
School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, 710062 People's Republic of China.
This work aims to explore the control effect of DBS on Alzheimer's disease (AD) from a neurocomputational perspective. Firstly, a data-driven cortical network model is constructed using the Diffusion Tensor Imaging data. Then, a typical electrophysiological feature of EEG slowing in AD is reproduced by reducing the synaptic connectivity parameters.
View Article and Find Full Text PDFElife
October 2024
University of California San Diego, Department of Neurobiology, School of Biological Sciences, San Diego, United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!