Swine influenza viruses (SIVs), the causal agents of swine influenza, are not only important to control due to the economic losses in the swine industry, but also can be pandemic pathogens. Vaccination is one of the most relevant strategies to control and prevent influenza infection. Current human vaccines against influenza induce strain-specific immunity and annual update is required due to the virus antigenic shift phenomena. Previously, our group has reported the use of conserved hemagglutinin peptides (HA-peptides) derived from H1-influenza virus as a potential multivalent vaccine candidate. Immunization of swine with these HA-peptides elicited antibodies that recognized and neutralized heterologous influenza viruses in vitro and demonstrated strong hemagglutination-inhibiting activity. In the present work, we cloned one HA-peptide (named NG34) into a plasmid fused with cytotoxic T lymphocyte-associated antigen (CTLA4) which is a molecule that modifies T cell activation and with an adjuvant activity interfering with the adaptive immune response. The resulting plasmid, named pCMV-CTLA4-Ig-NG34, was administered twice to animals employing a needle-free delivery approach. Two studies were carried out to test the efficacy of pCMV-CTLA4-Ig-NG34 as a potential swine influenza vaccine, one in seronegative and another in seropositive pigs against SIV. The second one was aimed to evaluate whether pCMV-CTLA4-Ig-NG34 vaccination would overcome maternally derived antibodies (MDA). After immunization, all animals were intranasally challenged with an H3N2 influenza strain. A complete elimination or significant reduction in the viral shedding was observed within the first week after the challenge in the vaccinated animals from both studies. In addition, no challenged heterologous virus load was detected in the airways of vaccinated pigs. Overall, it is suggested that the pCMV-CTLA4-Ig-NG34 vaccine formulation could potentially be used as a multivalent vaccine against influenza viruses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6396909 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0212431 | PLOS |
Avian influenza is not a new disease, but the emergence of high pathogenicity avian influenza (HPAI) viruses of the A/Goose/Guangdong/1/96 lineage (Gs/GD) has necessitated fundamental changes to prevention and control strategies for this disease. No longer just an avian disease, avian influenza is capable of causing severe disease in humans and is considered a potential human pandemic threat requiring One Health approaches. In addition, Gs/GD HPAI viruses have developed the capacity to be carried across and between continents by migratory birds.
View Article and Find Full Text PDFRev Sci Tech
December 2024
H5Nx A/Goose/Guangdong/1/96 Eurasian lineage high pathogenicity avian influenza (HPAI) viruses have been the main HPAI strains detected globally since 2005. These have spread around the world, causing a panzootic that has spanned six continents, with continual threat to not only wild and captive birds and poultry, but also wild, captive and domestic mammals and humans. The viruses' ecology and epidemiology - especially the 2.
View Article and Find Full Text PDFAnn Med
December 2025
Infectious disease Control Department, Quzhou Center for Disease Control and Prevention, Quzhou, Zhejiang Province, China.
Background: The global seasonal influenza activity has decreased during the coronavirus disease 2019 (COVID-19) pandemic. Non-pharmaceutical interventions (NPIs), such as reducing gatherings and wearing masks, can have varying impacts on the spread of influenza. We aim to analyse the basic characteristics, epidemiology and space-time clustering of influenza in Quzhou city before and after the COVID-19 pandemic based on five years of surveillance data.
View Article and Find Full Text PDFGut Microbes
December 2025
Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium.
Maternal gut microbiota composition contributes to the status of the neonatal immune system and could influence the early life higher susceptibility to viral respiratory infections. Using a novel protocol of murine maternal probiotic supplementation, we report that perinatal exposure to () or () increases the influenza A/PR8 virus (IAV) clearance in neonates. Following either supplementation, type 1 conventional dendritic cells (cDC1) were amplified in the lymph nodes leading to an enhanced IAV antigen-experienced IFN-γ producing effector CD8 T cells in neonates and IAV-specific resident memory CD8 T cells in adulthood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!