The N-glycosylation profile of immunoglobulin G (IgG) is considered a critical quality attribute due to its impact on IgG-Fc gamma receptor (FcγR) interactions, which subsequently affect antibody-dependent cell-based immune responses. In this study, we investigated the impact of the FcγR capture method, as well as FcγR N-glycosylation, on the kinetics of interaction with various glycoforms of trastuzumab (TZM) in a surface plasmon resonance (SPR) biosensor assay. More specifically, we developed a novel strategy based on coiled-coil interactions for the stable and oriented capture of coil-tagged FcγRs at the biosensor surface. Coil-tagged FcγR capture outperformed all other capture strategies applied to the SPR study of IgG-FcγR interactions, as the robustness and reproducibility of the assay and the shelf life of the biosensor chip were excellent (> 1,000 IgG injections with the same biosensor surface). Coil-tagged FcγRs displaying different N-glycosylation profiles were generated either by different expression systems, in vitro glycoengineering or by size-exclusion chromatography, and roughly characterized by lectin blotting. Of salient interest, the overlay of their kinetics of interaction with several TZM glycoforms revealed key differences on both association and dissociation kinetics, confirming a complex influence of the FcγR N-glycosylation and its inherent heterogeneity upon receptor interaction with mAbs. This work is thus an important step towards better understanding of the impact of glycosylation upon binding of IgGs, either natural or engineered, to their receptors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6512902 | PMC |
http://dx.doi.org/10.1080/19420862.2019.1581017 | DOI Listing |
Biomed Opt Express
January 2025
School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China.
Accurate and efficient determination of malachite green (MG) in aquaculture is crucial for ensuring environment and food safety. Herein, we present a dual-response fluorescence probe based on an Ag/PMMA/Eu nanocomposite for the sensitive detection of MG with low concentration and single droplet. The luminescence properties of the Ag/PMMA/Eu nanocomposite and the fluorescence resonance energy transfer (FRET) effect between Eu and MG are significantly improved due to the localized surface plasmon resonance (LSPR) effect.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Nankai University, Department of Chemistry, Weijin road, 300071, Tianjin, CHINA.
Localized surface plasmon resonance (LSPR) metals exhibit remarkable light-absorbing property and unique catalytic activity, attracting significant attention in photocatalysts recently. However, the practical application of plasmonic nanometal is hindered by challenge of energetic electrons extraction and low selectivity. The energetic carriers generated in nanometal under illumination have extremely short lifetimes, leading to rapid energy loss.
View Article and Find Full Text PDFMicrob Biotechnol
January 2025
Izmir Biomedicine and Genome Center, Izmir, Turkey.
Low-cost and safe vaccines are needed to fill the vaccine inequity gap for future pandemics. Pichia pastoris is an ideal expression system for recombinant protein production due to its cost-effective and easy-to-scale-up process. Here, we developed a next-generation SARS-CoV2 Omicron BA.
View Article and Find Full Text PDFPlasmonic structured illumination microscopy (PSIM) is a super-resolution technique that utilizes surface plasmon polaritons (SPPs) with higher frequency as the structured light; thus, it is able to break the diffraction limit with a 3-4 times resolution enhancement. However, the low efficiency of near-field fluorescence collection results in a low imaging signal-to-noise ratio (SNR) of PSIM. In this paper, we propose a method to enhance the performance of PSIM with surface plasmon coupled emission (SPCE).
View Article and Find Full Text PDFSci Rep
January 2025
School of Physics, Electrical and Energy Engineering, Chuxiong Normal University, Chuxiong, 675000, China.
In this paper, we discuss quantum friction in a system formed by two metallic surfaces separated by a ferromagnetic intermedium of a certain thickness. The internal degrees of freedom in the two metallic surfaces are assumed to be plasmons, while the excitations in the intermediate material are magnons, modeling plasmons coupled to magnons. During relative sliding, one surface moves uniformly parallel to the other, causing friction in the system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!