We analyze the impact of a proposed tidal instability coupling p modes and g modes within neutron stars on GW170817. This nonresonant instability transfers energy from the orbit of the binary to internal modes of the stars, accelerating the gravitational-wave driven inspiral. We model the impact of this instability on the phasing of the gravitational wave signal using three parameters per star: an overall amplitude, a saturation frequency, and a spectral index. Incorporating these additional parameters, we compute the Bayes factor (lnB_{!pg}^{pg}) comparing our p-g model to a standard one. We find that the observed signal is consistent with waveform models that neglect p-g effects, with lnB_{!pg}^{pg}=0.03_{-0.58}^{+0.70} (maximum a posteriori and 90% credible region). By injecting simulated signals that do not include p-g effects and recovering them with the p-g model, we show that there is a ≃50% probability of obtaining similar lnB_{!pg}^{pg} even when p-g effects are absent. We find that the p-g amplitude for 1.4  M_{⊙} neutron stars is constrained to less than a few tenths of the theoretical maximum, with maxima a posteriori near one-tenth this maximum and p-g saturation frequency ∼70  Hz. This suggests that there are less than a few hundred excited modes, assuming they all saturate by wave breaking. For comparison, theoretical upper bounds suggest ≲10^{3} modes saturate by wave breaking. Thus, the measured constraints only rule out extreme values of the p-g parameters. They also imply that the instability dissipates ≲10^{51}  erg over the entire inspiral, i.e., less than a few percent of the energy radiated as gravitational waves.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.122.061104DOI Listing

Publication Analysis

Top Keywords

p-g effects
12
tidal instability
8
neutron stars
8
saturation frequency
8
p-g
8
p-g model
8
saturate wave
8
wave breaking
8
instability
5
modes
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!