We measure the effects of transverse wakefields driven by a relativistic proton bunch in plasma with densities of 2.1×10^{14} and 7.7×10^{14}  electrons/cm^{3}. We show that these wakefields periodically defocus the proton bunch itself, consistently with the development of the seeded self-modulation process. We show that the defocusing increases both along the bunch and along the plasma by using time resolved and time-integrated measurements of the proton bunch transverse distribution. We evaluate the transverse wakefield amplitudes and show that they exceed their seed value (<15  MV/m) and reach over 300  MV/m. All these results confirm the development of the seeded self-modulation process, a necessary condition for external injection of low energy and acceleration of electrons to multi-GeV energy levels.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.122.054801DOI Listing

Publication Analysis

Top Keywords

proton bunch
16
seeded self-modulation
8
bunch plasma
8
bunch
5
experimental observation
4
observation plasma
4
plasma wakefield
4
wakefield growth
4
growth driven
4
driven seeded
4

Similar Publications

Herein, choline chloride/oxalic acid (ChCl/OA) and choline chloride/oxalic acid/ethylene glycol (ChCl/OA/EG) pretreatments of oil palm empty fruit bunches (EFB) and mesocarp fibers (MSF) were conducted to achieve protection of the lignin structure, while improving the enzymatic efficiency of the solid residues. Under the operating conditions of 90 °C and 6 h, ChCl/OA/EG demonstrated a higher lignin extraction selectivity and obtained solid residues with higher hemicellulose content compared to ChCl/OA. The digestibility of glucan and xylan in solid residues obtained using ChCl/OA/EG achieved 98.

View Article and Find Full Text PDF

Proton bunch monitors for the clinical translation of prompt gamma-ray timing.

Phys Med Biol

November 2024

OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.

. Prompt gamma-ray timing is an emerging technology in the field of particle therapy treatment verification. This system measures the arrival times of gamma rays produced in the patient body and uses the cyclotron radio frequency signal as time reference for the beam micro-bunches.

View Article and Find Full Text PDF

Wave-particle resonance, a ubiquitous process in the plasma universe, occurs when resonant particles observe a constant wave phase to enable sustained energy transfer. Here, we present spacecraft observations of simultaneous Landau and anomalous resonances between oblique whistler waves and the same group of protons, which are evidenced, respectively, by phase-space rings in parallel-velocity spectra and phase-bunched distributions in gyrophase spectra. Our results indicate the coupling between Landau and anomalous resonances via the overlapping of the resonance islands.

View Article and Find Full Text PDF

Laser-plasma accelerators (LPAs) can deliver pico- to nanosecond long proton bunches with ≳100 nC of charge dispersed over a broad energy spectrum. Increasing the repetition rates of today's LPAs is a necessity for their practical application. This, however, creates a need for real-time proton bunch diagnostics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!