Aiming at a better understanding of anomalous and topological effects in gauge theories out of equilibrium, we study the real-time dynamics of a prototype model for CP violation, the massive Schwinger model with a θ term. We identify dynamical quantum phase transitions between different topological sectors that appear after sufficiently strong quenches of the θ parameter. Moreover, we establish a general dynamical topological order parameter, which can be accessed through fermion two-point correlators and, importantly, which can be applied for interacting theories. Enabled by this result, we show that the topological transitions persist beyond the weak-coupling regime. Finally, these effects can be observed with tabletop experiments based on existing cold-atom, superconducting-qubit, and trapped-ion technology. Our Letter thus presents a significant step towards quantum simulating topological and anomalous real-time phenomena relevant to nuclear and high-energy physics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.122.050403 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!