Phenolic compounds of eight pistachio ( Pistacia vera L.) cultivars and their residual cakes and virgin oils (screw pressing) were studied using high-performance liquid chromatography-diode array detection-electrospray ionization-tandem mass spectrometry. A total of 25 compounds were identified and quantified for pistachio nuts and residual cakes, with the presence of five flavonols, six flavanols, and one gallotannin being reported for the first time. Total phenolics in pistachio nuts showed a concentration from 1359 mg/kg (Kastel) to 4507 mg/kg (Larnaka). Flavanols were the most abundant phenolics, at about 90%, with resulting procyanidin B1 and gallocatechin being the main phenolics, depending upon the cultivar. Other phenolic groups, such as anthocyanins (from 54 to 218 mg/kg), flavonols (from 76 to 130 mg/kg), flavanones (from 12 to 71 mg/kg), and gallotannins (from 4 to 46 mg/kg), were also identified. Residual cakes presented the same phenolic profile but with a concentration almost double because of the concentration effect caused by the oil separation. Virgin pistachio oils showed a very low phenolic content, with eriodyctiol being the only compound identified.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.8b06509 | DOI Listing |
Eur J Pharm Sci
January 2025
RheaVita, Poortakkerstraat 9C, 9051 Ghent, Belgium; Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium. Electronic address:
Continuous spin-freeze-drying is an innovative pharmaceutical manufacturing approach offering real-time monitoring and control at the individual vial level, unlike conventional batch lyophilization. A central feature of this technology is spin-freezing, which involves rapidly spinning liquid-filled vials under a precisely controlled cold gas flow, resulting in a thin, uniform frozen product layer. Using a model peptide formulation, we investigated the impact of different cooling and crystallization rates on quality attributes (QA) and primary drying duration.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
June 2024
Xiamen Branch, CCCC First Highway Engineering Group Co, Ltd., Xiamen, China.
Front Vet Sci
January 2024
Department of Agriculture, University of Naples Federico II, Portici, Italy.
The use of two nozzle diameters (6 and 8 mm) in a cold (50°C) hemp seed oil extraction process was evaluated in terms of extraction efficiency, and chemical composition and fermentation characteristics of the residual cake. Seeds of the varieties Futura 75 and Uso 31 were pressed using a mechanical press with a cooling device. Five pressings were carried out for each variety and nozzle size, the functional parameters of the extraction processes were recorded, and sample of the residual cakes ( = 20) were analyzed.
View Article and Find Full Text PDFFood Chem
June 2024
State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Institute of Shaoxing, Tianjin University, Zhejiang 312300, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.
The residual dextran impurities in the upstream process significantly impact the crystallization of starch-based functional sugar and the related food properties. This study intends to reveal the mechanism of dextran's influence on trehalose crystallization, and build a relationship among the dextran in syrup and the physicochemical and functional properties of trehalose. Instead of incorporating into the crystal lattice, dextran changes the assembly rate of trehalose molecules on crystal surface.
View Article and Find Full Text PDFMembranes (Basel)
September 2023
Institute of Particle Process Engineering, University of Kaiserslautern-Landau, 67663 Kaiserslautern, Germany.
In the field of liquid filtration, the realization of gas throughput-free cake filtration has been investigated for a long time. Cake filtration without gas throughput would lead to energy savings in general and would reduce the mechanically achievable residual moisture in filter cakes in particular. The reason why gas throughput-free filtration could not be realized with fabrics so far is that the achievable pore sizes are not small enough, and that the associated capillary pressure is too low for gas throughput-free filtration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!