AI Article Synopsis

Article Abstract

An ultrasensitive analysis method for quantification of endogenous brassinosteroids in fresh minute plants was developed based on dispersive matrix solid-phase extraction coupled with high performance liquid chromatography-tandem mass spectrometry. During the dispersive matrix solid-phase extraction, plant samples were first ground with solid sorbent (dispersant) in one microcentrifuge tube and then centrifuged after adding extraction solvent and cleanup materials (another type of sorbent). Three protocols based on dispersive matrix solid-phase extraction were compared and discussed for plant samples with different matrix complexity. The choice of any protocol was a compromise of increasing purification efficiency and decreasing sample loss. Under optimized conditions, the limits of detection were 1.38-6.75 pg mL for five brassinosteroids in the oilseed rape samples. The intraday and interday precisions were in the range of 0.8%-9.8% and 4.6%-17.3%, respectively. The proposed method was successfully applied to detection of endogenous brassinosteroids in milligram oilseed rape (2.0 mg) and submilligram Arabidopsis thaliana seedlings (0.5 mg). Finally, the geographical distribution of five endogenous brassinosteroids of Brassica napus L. oilseed rape in different provinces of origin in the Yangtze River basin was described.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.8b07224DOI Listing

Publication Analysis

Top Keywords

dispersive matrix
16
matrix solid-phase
16
solid-phase extraction
16
endogenous brassinosteroids
16
oilseed rape
12
coupled high
8
high performance
8
performance liquid
8
liquid chromatography-tandem
8
chromatography-tandem mass
8

Similar Publications

Nanoconfinement at the interface of heterogeneous Fenton-like catalysts offers promising avenues for advancing oxidation processes in water purification. Herein, we introduce a template-free strategy for synthesizing nanoconfined catalysts from municipal sludge (S-NCCs), specifically engineered to optimize reactive oxygen species (ROS) generation and utilization for rapid pollutant degradation. Using selective hydrofluoric acid corrosion, we create an architecture that confines atomically dispersed Fe centers within a micro-mesoporous carbon matrix in situ.

View Article and Find Full Text PDF

Extension of shelf-life of mangoes using PLA-cardanol-amine functionalized graphene active films.

Int J Biol Macromol

January 2025

Food Packaging Technology Department, CSIR-Central Food Technological Research Institute, Mysuru, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India. Electronic address:

Multifunctional PLA films were fabricated through the solution casting method by incorporating cardanol oil (CA) and amine-functionalized graphene (AFG). The effect of the CA, and AFG on the structural, mechanical, thermal, thermo-mechanical and antioxidant properties of PLA films were investigated. FTIR analysis of PLA-CA films showed distinct peak positions at 1590 cm corresponding to the aromatic CC bonds of CA, showing that CA is compatible with the PLA.

View Article and Find Full Text PDF

Time-dependent afterglow colored (TDAC) behavior differs from static afterglow by involving wavelength changes, enabling low-cost, high-level encryption and anti-counterfeiting. However, the existing carbon dot (CD)-based TDAC materials lack a clear mechanistic explanation and controllable wavelength changes, significantly hindering the progress of practical applications in this field. In this study, we synthesized CDs composites with customizable tunable TDAC wavelengths across the visible region.

View Article and Find Full Text PDF

Bamboo fiber-derived carbon support for the immobilization of Pt nanoparticles to enhance hydrogen evolution reaction.

J Colloid Interface Sci

January 2025

College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China. Electronic address:

Biomass-derived carbon, as an excellent support, has received extensive attention. In this work, carbon matrix obtained from bamboo fiber (BF) is served as a supporting material for the immobilization of platinum (Pt) nanoparticles, leading to a substantial improvement in the hydrogen evolution reaction (HER). This approach leverages the remarkable surface area, outstanding conductivity, and environmentally friendly characteristics of BF-derived carbon, facilitating the dispersion and stability of the Pt nanoparticles.

View Article and Find Full Text PDF

Simultaneous Toughening and Strengthening of Ductile Polymer by Rigid Polymeric Fillers: The Role of Interfacial Entanglement.

Macromol Rapid Commun

January 2025

Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, Singapore, 117575, Singapore.

The modification of thermoplastic polymers is frequently impeded by the inherent contradiction between their toughness and strength. In this study, an effective strategy to significantly improve the mechanical properties of ductile polymers by simply adding a complimentary rigid polymer is introduced. This work uses a semi-crystalline polymer aliphatic polyketone (POK) as the matrix material and a small quantity of polymethyl methacrylate (PMMA) as the rigid polymer, through establishing molecular chain entanglements at the interface to produce POK/PMMA blends with exceptional mechanical property.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!