We demonstrate a highly effective nonlinearity of 7.3 W m in a high-confinement gallium nitride-on-sapphire waveguide by performing four-wave mixing characterization at telecom wavelengths. Benefitting from a high-index-contrast waveguide layout, we can engineer the device dispersion efficiently and achieve broadband four-wave mixing operation over more than 100 nm. The intrinsic material nonlinearity of gallium nitride is extracted. Furthermore, we fabricate microring resonators with quality factors above 100,000, which will be promising for various nonlinear applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.44.001064 | DOI Listing |
Aluminum gallium arsenide (AlGaAs) and related III-V semiconductors have excellent optoelectronic properties. They also possess strong material nonlinearity as well as high refractive indices. In view of these properties, AlGaAs is a promising candidate for integrated photonics, including both linear and nonlinear devices, passive and active devices, and associated applications.
View Article and Find Full Text PDFWe demonstrate a highly effective nonlinearity of 7.3 W m in a high-confinement gallium nitride-on-sapphire waveguide by performing four-wave mixing characterization at telecom wavelengths. Benefitting from a high-index-contrast waveguide layout, we can engineer the device dispersion efficiently and achieve broadband four-wave mixing operation over more than 100 nm.
View Article and Find Full Text PDFRev Sci Instrum
November 2016
University of California at Davis, Davis, California 95616, USA.
The critical component enabling electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) to resolve 2D and 3D electron temperature and density perturbations is the heterodyne imaging array that collects and downconverts radiated emission and/or reflected signals (50-150 GHz) to an intermediate frequency (IF) band (e.g. 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!