Ted Janssen and aperiodic crystals.

Acta Crystallogr A Found Adv

Université Grenoble Alpes, CNRS, SIMaP, 1130 Rue de la Piscine, BP 75, 38402 St Martin d Heres, France.

Published: March 2019

This article reviews some of Ted Janssen's (1936-2017) major contributions to the field of aperiodic crystals. Aperiodic crystals are long-range ordered structures without 3D lattice translations and encompass incommensurately modulated phases, incommensurate composites and quasicrystals. Together with Pim de Wolff and Aloysio Janner, Ted Janssen invented the very elegant theory of superspace crystallography that, by adding a supplementary dimension to the usual 3D space, allows for a deeper understanding of the atomic structure of aperiodic crystals. He also made important contributions to the understanding of the stability and dynamics of aperiodic crystals, exploring their fascinating physical properties. He constantly interacted and collaborated with experimentalists, always ready to share and explain his detailed understanding of aperiodic crystals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6396404PMC
http://dx.doi.org/10.1107/S2053273318016765DOI Listing

Publication Analysis

Top Keywords

aperiodic crystals
24
ted janssen
8
aperiodic
6
crystals
6
janssen aperiodic
4
crystals article
4
article reviews
4
reviews ted
4
ted janssen's
4
janssen's 1936-2017
4

Similar Publications

An aperiodic chiral tiling by topological molecular self-assembly.

Nat Commun

January 2025

Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland.

Studying the self-assembly of chiral molecules in two dimensions offers insights into the fundamentals of crystallization. Using scanning tunneling microscopy, we examine an uncommon aggregation of polyaromatic chiral molecules on a silver surface. Dense packing is achieved through a chiral triangular tiling of triads, with N and N ± 1 molecules at the edges.

View Article and Find Full Text PDF

We investigate the band structure of metal-dielectric photonic crystals comprising stacked organic semiconductor microcavities with silver metal mirrors incorporating crystal defects: individual unit cells with aperiodic dimensionality. Both transfer matrix simulation and experimental verification are performed to investigate the impact on the photonic band structure as a single cavity is varied in size. The resulting mid-gap defect states are shown to hybridize with a photonic band at certain resonant dimensions.

View Article and Find Full Text PDF

We draw attention to the exceptional work of Geers et al. [(2024). IUCrJ, 11, 910-920] on the analysis of magnetic phases, in which challenging magnetic structures are determined by a combination of modern computational methods and a connection between nuclear modulation and the ordering of magnetic moments is shown.

View Article and Find Full Text PDF
Article Synopsis
  • Landau introduced the concept of rotons to explain superfluid liquid helium, which are quantum particle excitations associated with the disordered arrangement of atoms.
  • The study demonstrates the existence of electronic rotons in a two-dimensional dipole liquid of alkali-metal ions interacting with black phosphorus, showcasing a unique energy minimum in their dispersion.
  • As dipole density decreases, the interactions become more significant, leading to Wigner crystallization, with our findings highlighting the role of strong correlations in the formation of electronic rotons and a pseudogap.
View Article and Find Full Text PDF

We use synchrotron X-ray diffraction measurements to monitor the solvothermal crystallization mechanism of the aperiodic metal-organic framework TRUMOF-1. Following an initial incubation period, TRUMOF-1 forms as a metastable intermediate that subsequently transforms into an ordered product with triclinic crystal symmetry. We determine the structure of this ordered phase, which we call msw-TRUMOF-1, and show that it is related to TRUMOF-1 through topotactic reorganization of linker occupancies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!