Cell-type-specific gene targeting with the Cre/loxP system has become an indispensable technique in experimental neuroscience, particularly for the study of late-born glial cells that make myelin. A plethora of conditional mutants and Cre-expressing mouse lines is now available to the research community that allows laboratories to readily engage in in vivo analyses of oligodendrocytes and their precursor cells. This chapter summarizes concepts and strategies in targeting myelinating glial cells in mice for mutagenesis or imaging, and provides an overview of the most important Cre driver lines successfully used in this rapidly growing field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-9072-6_15 | DOI Listing |
Cell Transplant
January 2025
Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Neuropathic pain is a debilitating complication following spinal cord injury (SCI). Currently, effective treatments for SCI-induced neuropathic pain are highly lacking. This clinical trial aimed to investigate the efficacy of combined intrathecal injection of Schwann cells (SCs) and bone marrow-derived mesenchymal stem cells (BMSCs) in improving SCI-induced neuropathic pain.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China.
Purpose: This study aimed to investigate the role of SIRT4 in retinal protection, specifically its ability to mitigate excitotoxic damage to Müller glial cells through the regulation of mitochondrial dynamics and glutamate transporters (GLASTs).
Methods: A model of retinal excitatory neurotoxicity was established in mice. Proteins related to mitochondrial dynamics, GLAST, and SIRT4 were analyzed on days 0, 1, 3, and 5 following toxic injury.
Sci Immunol
January 2025
Department of Immunology, Harvard Medical School; Boston, MA, USA.
Our understanding of the meningeal immune system has recently burgeoned, particularly regarding how innate and adaptive effector cells are mobilized to meet brain challenges. However, information on how meningeal immunocytes guard brain homeostasis in healthy individuals remains limited. This study highlights the heterogeneous, polyfunctional regulatory T cell (T) compartment in the meninges.
View Article and Find Full Text PDFGlia
January 2025
Department of Ophthalmology, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland.
Glia antigen-presenting cells (APCs) are pivotal regulators of immune surveillance within the retina, maintaining tissue homeostasis and promptly responding to insults. However, the intricate mechanisms underlying their local coordination and activation remain unclear. Our study integrates an animal model of retinal injury, retrospective analysis of human retinas, and in vitro experiments to gain insights into the crucial role of antigen presentation in neuroimmunology during retinal degeneration (RD), uncovering the involvement of various glial cells, notably Müller glia and microglia.
View Article and Find Full Text PDFInt J Dev Neurosci
February 2025
Neurodegeneration and Repair Lab, Department of Pathology, Postgraduate Program in Anatomical Pathology, Faculty of Medicine, Universitary Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
Most of the malformations of the polymicrogyria spectrum are caused by destructive lesions of the neocortex during the third trimester of pregnancy, triggered by hypoxic-ischemic, hemorrhagic or infectious events, with neuroinflammation as a common pathophysiological mechanism. Our study investigated hydrocortisone treatment in attenuating inflammation, malformations development and seizures predisposition in mice subjected to neonatal transcranial freeze lesion. Our results show attenuation of malformation and predisposition to febrile seizures, with concomitant reduction of macrophages/microglia after neonatal freeze lesion, polarizing them towards an anti-inflammatory profile.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!