In the central nervous system, oligodendrocyte-lineage cells and myelination can adapt to physiological brain activity. Since myelin can in turn regulate neuronal function, such "adaptive" myelination has been proposed as a form of nervous system plasticity, implicated in learning and cognition. The molecular and cellular mechanisms underlying adaptive myelination and its functional consequences remain to be fully defined, partly because it remains challenging to manipulate activity and monitor myelination over time in vivo at single-cell resolution, in a model that would also allow examination of the functional output of individual neurons and circuits. Here, we describe a workflow to manipulate neuronal activity and to assess oligodendrocyte-lineage cell dynamics and myelination in larval zebrafish, a vertebrate animal model that is ideal for live imaging and amenable to genetic discovery, and that has well-characterized neuronal circuits with myelinated axons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-9072-6_12 | DOI Listing |
Mol Cell Neurosci
December 2024
Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Türkiye; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Türkiye; Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University, Izmir, Türkiye. Electronic address:
Alzheimer's disease (AD) is a neurodegenerative disorder that is characterized by the accumulation of amyloid plaques, phosphorylated tau tangles and microglia toxicity, resulting in neuronal death and cognitive decline. Since microglia are recognized as one of the key players in the disease, it is crucial to understand how microglia operate in disease conditions and incorporate them into models. The studies on human microglia functions are thought to reflect the post-symptomatic stage of the disease.
View Article and Find Full Text PDFProg Biophys Mol Biol
December 2024
Molecular Biotechnology, Turkish-German University, Sahinkaya Caddesi No. 106, Beykoz, Istanbul 34820 Turkey. Electronic address:
The intersection of electromagnetic radiation and neuronal communication, focusing on the potential role of biophoton emission in brain function and neurodegenerative diseases is an emerging research area. Traditionally, it is believed that neurons encode and communicate information via electrochemical impulses, generating electromagnetic fields detectable by EEG and MEG. Recent discoveries indicate that neurons may also emit biophotons, suggesting an additional communication channel alongside the regular synaptic interactions.
View Article and Find Full Text PDFJ Proteomics
December 2024
School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand; Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia; Department of Medicine, University of Otago, Christchurch 8014, New Zealand; Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand. Electronic address:
Extreme heterogeneity exists in the hypersensitive stress response exhibited by the dystrophin-deficient mdx mouse model of Duchenne muscular dystrophy. Because stress hypersensitivity can impact dystrophic phenotypes, this research aimed to understand the peripheral pathways driving this inter-individual variability. Male and female mdx mice were phenotypically stratified into "stress-resistant" or "stress-sensitive" groups based on their response to two laboratory stressors.
View Article and Find Full Text PDFEcotoxicol Environ Saf
December 2024
Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, Liaoning 110122, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China. Electronic address:
Cadmium (Cd), a notorious environmental pollutant, has been linked to neurological disorders, but the underlying mechanism remains elusive. We aimed to explore the role of microglia in Cd-induced synaptic damages at environmentally relevant doses and whether microglia directly engulf synaptic structures. Nrf2 is deeply implicated in the status of microglial activation; therefore, we also investigated whether it is involved in the above process.
View Article and Find Full Text PDFCurr Biol
December 2024
Department of Neurobiology, University of Utah, 20 S 2030 E, BPRB 490D, Salt Lake City, UT 84112, USA. Electronic address:
Integrative studies of diverse neuronal networks that govern social behavior are hindered by a lack of methods to record neural activity comprehensively across the entire brain. The recent development of the miniature fish Danionella cerebrum as a model organism offers one potential solution, as the small size and optical transparency of these animals make it possible to visualize circuit activity throughout the nervous system. Here, we establish the feasibility of using Danionella as a model for social behavior and socially reinforced learning by showing that adult fish exhibit strong affiliative tendencies and that social interactions can serve as the reinforcer in an appetitive conditioning paradigm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!