Siderophores are a driver of Pinus sylvestris root responses to metabolites secreted by pathogenic and mycorrhizal fungi. Structurally different siderophores regulate the uptake of Fe by microorganisms and may play a key role in the colonization of plants by beneficial or pathogenic fungi. Siderophore action, however, may be dependent on the distribution of Fe within cells. Here, the involvement of siderophores in determining the changes of organelle morphology and element composition of some cellular fractions of root cells in Pinus sylvestris to trophically diverse fungi was investigated. Changes in the morphology and concentrations of different elements within organelles of root cells in response to three structurally different siderophores were examined by transmission electron microscopy combined with energy-dispersive X-ray spectroscopy. Weak development of mitochondrial cristae and the deposition of backup materials in plastids occurred in the absence of Fe in the structures of triacetylfusarinine C and ferricrocin. In response to metabolites of both pathogenic and mycorrhizal fungi, Fe accumulated mainly in the cell walls and cytoplasm. Fe counts increased in all of the analyzed organelles in response to applications of ferricrocin and triacetylfusarinine C. Chelation of Fe within the structure of siderophores prevents the binding of exogenous Fe, decreasing the abundance of Fe in the cell wall and cytoplasm. The concentrations of N, P, K, Ca, Mn, Cu, Mg, and Zn also increased in cells after applications of ferricrocin and triacetylfusarinine C, while the levels of these elements decreased in the cell wall and cytoplasm when Fe was present within the structure of the siderophores. These results provide insight into the siderophore-driven response of plants to various symbionts.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00425-019-03117-2DOI Listing

Publication Analysis

Top Keywords

structurally siderophores
12
pinus sylvestris
12
root cells
12
sylvestris root
8
pathogenic mycorrhizal
8
mycorrhizal fungi
8
applications ferricrocin
8
ferricrocin triacetylfusarinine
8
structure siderophores
8
cell wall
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!