Purpose: The morphology of the vertebral artery (VA) segment at the suboccipital dural penetration site has little been explored with magnetic resonance imaging (MRI). Therefore, the aim of this study was to examine the structure using MRI.
Methods: In total, 94 patients underwent thin-sliced, contrast MRI in the axial, coronal, and sagittal planes involving the atlas, axis, occipital bone, and V3 and V4 segments of the VA.
Results: The VA segment at the suboccipital dural penetration site was well-delineated in 93% on the axial images and in 95% on the coronal images. The axial images showed that 82% of the VA penetration sites were located in the middle third of the dural sac. Meanwhile, the coronal images revealed that the heights of both VA penetration sites were located at the same level in 87%. The axial VA penetration angle, which is formed by the VA and tangential line of the dural sac, was 66 ± 11.9° on the right side and 61 ± 14.1° on the left side. The coronal VA penetration angle, which is formed by the tangential line of the VA and dural sac, was 111 ± 24.6° on the right side and 112 ± 19.9° on the left side.
Conclusions: The morphology of the VA segment is considerably variable at the suboccipital dural penetration site, while most penetration sites are located in the middle third of the dural sac on axial MRI. These should be assumed during surgeries around the suboccipital VA penetration site.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00381-019-04103-5 | DOI Listing |
ACS Biomater Sci Eng
January 2025
State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
In most studies, the penetration of nanoparticles into tumors was mainly dependent on the enhanced permeability and retention (ERP) effect. However, the penetration of nanoparticles would be limited by tumor-dense structure, immune system, and other factors. To solve these problems, macrophages with active tropism to tumor tissues, loaded nanoparticles with photothermal therapy, and chemotherapy were designed.
View Article and Find Full Text PDFIndian Dermatol Online J
December 2024
Department of Experimental and Clinical Medicine, DISM, Institute of Dermatology Udine, Udine, Italy.
Introduction: Ultraviolet-induced fluorescence dermoscopy (UVF dermoscopy) is a novel diagnostic technique for identifying and diagnosing numerous skin tumors, inflammatory dermatoses, and infectious diseases. The ultraviolet (UV) band has a wavelength ranging from 10 to 400 nm. When intense UV radiation with shorter wavelengths strikes a target chromophore, visible light (VL) with a longer wavelength and lower energy is produced in the skin.
View Article and Find Full Text PDFFood Res Int
February 2025
School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China. Electronic address:
Ferrous ions (Fe), the primary form of iron in cells, play a crucial role in various biological processes. The presence and absorption of Fe in food has an important impact on human health. Proper dietary intake and iron supplementation are conducive to prevent and treat iron-related diseases.
View Article and Find Full Text PDFUltrasound Med Biol
January 2025
Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA; Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA. Electronic address:
Objective: Advanced imaging methods are crucial for understanding stroke mechanisms and discovering effective treatments to reduce bleeding and enhance recovery. In pre-clinical in vivo stroke imaging, MRI, CT and optical imaging are commonly used to evaluate stroke outcomes in rodent models. However, MRI and CT have limited spatial resolution for rodent brains, and optical imaging is hindered by limited imaging depth of penetration.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Department of Neurosurgery, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, China.
Traumatic brain injury (TBI) represents a significant global public health issue, with effective management posing numerous challenges. The pathophysiology of TBI is typically categorized into two phases: primary and secondary injuries. Secondary injury involves pathophysiological mechanisms such as blood-brain barrier (BBB) disruption, mitochondrial dysfunction, oxidative stress, and inflammatory responses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!