Evaluation of Oxidative Stress Parameters and Antioxidant Status in Plasma and Erythrocytes of Elderly Diabetic Patients with Sarcopenia.

J Nutr Health Aging

Ahmet Yalçın, Department of Geriatric Medicine, Ataturk's Research and Training Hospital, Eskibağlar Street, No:47, Safir Life apartments, A block flat no:14, Bağlıca, Etimesgut, Ankara, Turkey, e-mail: Telephone number: +90 533 254 54 45.

Published: June 2020

Objectives: Oxidative stress may play a role in the pathogenesis of both sarcopenia and diabetes. Although the risk of sarcopenia is increased in people with type 2 diabetes, the relationship between sarcopenia oxidative stress and antioxidant status among the older diabetes population is not well studied. The aim of this present study was to evaluate the relationship between oxidative stress and antioxidant status and sarcopenia in elderly diabetic patients.

Design: This was a cross-sectional designed study with a control group. A total of 60 type 2 diabetic elderly patients were enrolled in the study (30 sarcopenic and 30 controls).

Measurements: Comprehensive geriatric assessments and anthropometric measurements were performed. Sarcopenia was diagnosed according to the European Working Group on Sarcopenia in Older People. Skeletal muscle mass was measured using bioelectrical impedance analysis. A handheld dynamometer was used for skeletal muscle strength measurements. Gait speed was measured using a 4 meter walking test. Plasma malondialdehyde (MDA), glutathione peroxidase (GSH-Px) and erythrocyte MDA, GSH-Px, superoxide dismutase (SOD), catalase and xanthine oxidase (XO) measurements were performed.

Results: While plasma XO was significantly higher in sarcopenic individuals (0.406(0.225-0.775)) compared to controls (0.312(0.112-0.712)) (p=0.006), plasma GSH-Px was significantly lower in sarcopenic individuals (0.154(0.101-0.274)) compared to controls (0.204(0.12-.0312)) (p=0.003). Plasma XO (OR: 2.69 (CI 95% 0.13-52.76, p=0.041) and BMI (OR: 0.6 (CI 95% 0.41-0.89, p=0.009) were independently associated with sarcopenia of diabetes in multivariate analysis.

Conclusions: Only plasma XO was found to be independently associated with sarcopenia. XO can be important in the pathogenesis of sarcopenia in diabetes. Oxidative stress and antioxidant status might be associated with sarcopenia in diabetic older individuals but this association seems to be mediated by other factors. Further studies are needed on this subject.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12603-018-1137-yDOI Listing

Publication Analysis

Top Keywords

oxidative stress
20
antioxidant status
16
sarcopenia diabetes
12
stress antioxidant
12
associated sarcopenia
12
sarcopenia
11
elderly diabetic
8
pathogenesis sarcopenia
8
skeletal muscle
8
sarcopenic individuals
8

Similar Publications

Parkinson's disease (PD) is a limb movement disorder caused by the degeneration of brain neurons and seriously affects the quality of life of the elderly. However, the current drugs are symptomatic treatments that cannot prevent or delay the development of the disease. Targeted therapy for pathogenesis may be the direction of development in the future.

View Article and Find Full Text PDF

The Kidney-Immune-Brain Axis: The Role of Inflammation in the Pathogenesis and Treatment of Stroke in Chronic Kidney Disease.

Stroke

January 2025

Wolfson Centre for the Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom. (D.M.K., P.M.R.).

Cardiovascular diseases such as stroke are a major cause of morbidity and mortality for patients with chronic kidney disease (CKD). The underlying mechanisms connecting CKD and cardiovascular disease are yet to be fully elucidated, but inflammation is proposed to play an important role based on genetic association studies, studies of inflammatory biomarkers, and clinical trials of anti-inflammatory drug targets. There are multiple sources of both endogenous and exogenous inflammation in CKD, including increased production and decreased clearance of proinflammatory cytokines, oxidative stress, metabolic acidosis, chronic and recurrent infections, dialysis access, changes in adipose tissue metabolism, and disruptions in intestinal microbiota.

View Article and Find Full Text PDF

This study aims to reveal the potential molecular mechanisms of modified Gegen Qinlian decoction (MGQD) in relieving ulcerative colitis (UC). C57BL/6J mice were used to establish experimental colitis via dextran sodium sulfate (DSS). Body weight, disease activity index (DAI), spleen weight, colon length, and histopathologic features were measured to evaluate the therapeutic effects of MGQD on mice with UC.

View Article and Find Full Text PDF

Formononetin promotes porcine oocytes maturation and improves embryonic development by reducing oxidative stress.

Front Cell Dev Biol

January 2025

Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China.

Increasing evidence has demonstrated that oxidative stress impairs oocyte maturation and embryonic development. Conventionally, antioxidants have been applied systems to improve oocyte maturation and blastocyst rates. Formononetin (FMN) is a flavonoid that has been shown to have various pharmacological effects, including antioxidants.

View Article and Find Full Text PDF

A multifunctional photothermal electrospun PLGA/MoS@Pd nanofiber membrane for diabetic wound healing.

Regen Biomater

December 2024

Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.

Injury caused by excess reactive oxygen species (ROS) may lead to susceptibility to bacterial infection and sustained inflammatory response, which are the major factors impeding diabetic wound healing. By utilizing optimal anti-inflammatory, antioxidant and antibacterial biomaterials for multifunctional wound dressings is critical in clinical applications. In this study, a novel electrospun PLGA/MoS@Pd nanofiber membrane was synthesized by encapsulating antioxidant and near-infrared (NIR) responsive MOS@Pd nanozymes in PLGA nanofibers to form a multifunctional dressing for diabetic wound repair.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!