Hybrid polymer-ceramic electrolytes with high ceramic loading are currently investigated as a promising solution to achieve high safety and optimal mechanical properties in all-solid-state rechargeable batteries. In this study composite poly(ethylene oxide)/Li1.3Al0.3Ti1.7(PO4)3 (PEO/LATP) electrolytes, with and without lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) as the Li+ salt, were investigated through a combination of physicochemical and electrochemical techniques, including X-ray diffraction, scanning electron microscopy, thermal analysis, solid-state MAS-NMR and impedance spectroscopy. We were able to shed light on the interactions between the ceramic and the polymer phases, and on the mechanisms for Li+ transport. Membranes containing 70 wt% of LATP and 30 wt% of P(EO)15LiTFSI exhibit conductivity values of 4 × 10-5 Ω-1 cm-1 at 25 °C and in excess of 10-4 Ω-1 cm-1 at 45 °C. These promising results, obtained on a quasi-ceramic electrolyte through room temperature processing, suggest that further improvements in the transport properties of "polymer-in-ceramic" systems may be sought by increasing the amorphous polymer content, and by carefully investigating the role of the ceramic particles' composition, dimensions and dispersion on the transport properties of the hybrid system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9cp00405j | DOI Listing |
Soft Matter
January 2025
Research Center for Macromolecules & Biomaterials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047, Japan.
We developed a facile one-pot method for fabricating physical gels consisting of ultrahigh molecular weight (UHMW) polymers and highly concentrated lithium salt electrolytes. We previously reported physical gels formed from the entanglement of UHMW polymers by radical polymerisation in aprotic ionic liquids. In this study, we found that the molecular weight of methacrylate polymers formed by radical polymerisation increased with the concentration of lithium salts in the organic solvents.
View Article and Find Full Text PDFNano Lett
January 2025
Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China.
Li-rich layered oxide (LRO) cathode material is utilized in anode-free Li metal batteries to provide extra Li inventory, compensating for the constant Li loss during cycling. The Li compensation mechanism of LRO in the anode-free system is elucidated by exploring the reversible/irreversible Li consumption behaviors. Moreover, the relationship between cathode areal capacity, Li inventory, and the cycling performance of the Cu||LRO cell is quantitatively analyzed.
View Article and Find Full Text PDFNano Lett
January 2025
Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang 315200, P. R. China.
Constructing feasible sodium metal batteries (SMBs) faces complex challenges in stabilizing cathodes and sodium metal anodes. It is imperative, but often underemphasized, to simultaneously regulate the solid-electrolyte interphase (SEI) to counter dendrite growth and the cathode-electrolyte interphase (CEI) to mitigate cathode deterioration. Herein, we introduce lithium 2-trifluoromethyl-4,5-dicyanoimidazolide (LiTDI) as an efficacious additive in a carbonate-based electrolyte to extend cycle lifespan of full SMBs: the capacity retention reaches 77.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
Attributable to sulfur's significant theoretical energy density, its affordability, and its environmentally friendly nature, lithium-sulfur batteries (LSBs) are recognized as advanced energy storage technologies with considerable potential. Nonetheless, the solubility and migration of polysulfides within the electrolyte substantially hinder their practical implementation. To address this issue, we developed a nitrogen-doped two-dimensional (2D) wavy carbon nanosheet material (NCN) by using the Pickering emulsion templating method.
View Article and Find Full Text PDFChem Rec
January 2025
Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institution of New Energy, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, China.
This paper emphasizes the critical role of electrolyte selection in enhancing the electrochemical performance of nonaqueous Li-O batteries (LOBs). It provides a comprehensive overview of various electrolyte types and their effects on the electrochemical performance for LOBs, offering insights for future electrolyte screening and design. Despite recent advancements, current electrolyte systems exhibit inadequate stability, necessitating the urgent quest for an ideal nonaqueous electrolyte.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!