Current cartilage regenerative therapies are not fully effective in treating osteoarthritis of the knee (OAK). We have developed chondrocyte sheets for autologous transplantation and tested these in in vitro and in vivo preclinical studies, and have reported that the transplantation of chondrocyte sheets promoted hyaline cartilage repair in rat, rabbit, and minipig models. However, autologous transplantation of chondrocyte sheets has yet to be reported in humans. Here, we report our combination therapy in which conventional surgical treatment for OAK, is followed by autologous chondrocyte sheet transplantation for cartilage repair. Eight patients with OAK and cartilage defects categorized arthroscopically as Outerbridge grade III or IV receive the therapy. Patients are thoroughly assessed by preoperative and postoperative X-rays, magnetic resonance imaging (MRI), arthroscopy, Knee injury and Osteoarthritis Outcome Score (KOOS), Lysholm Knee Score (LKS), and a laser-induced photoacoustic method to assess cartilage viscoelasticity. Arthroscopic biopsies of all patients are performed 12 months after transplantation for histological evaluation. The properties of the chondrocyte sheets are evaluated using gene expression analysis to investigate the ability to predict the clinical and structural outcomes of the therapy. For this small initial longitudinal series, combination therapy is effective, as assessed by MRI, arthroscopy, viscoelasticity, histology, and the clinical outcomes of KOOS and LKS. Gene marker sets identified in autologous chondrocyte sheets may be predictive of the overall KOOS, LKS, and histological scores after therapy. These predictive gene sets may be potential alternative markers for evaluating OAK treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6384900 | PMC |
http://dx.doi.org/10.1038/s41536-019-0069-4 | DOI Listing |
Regen Ther
June 2024
Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan.
Introduction: Repairing damaged cartilage poses significant challenges, particularly in cases of congenital cartilage defects such as microtia or congenital tracheal stenosis, or as a consequence of traumatic injury, as the regenerative potential of cartilage is inherently limited. Stem cell therapy and tissue engineering offer promising approaches to overcome these limitations in cartilage healing. However, the challenge lies in the size of cartilage-containing organs, which necessitates a large quantity of cells to fill the damaged areas.
View Article and Find Full Text PDFBiomedicines
November 2024
Universidad Europea de Madrid, Department of Nursing, Faculty of Medicine, Health and Sports, 28670 Madrid, Spain.
While the flat bones of the face, most of the cranial bones, and the clavicles are formed directly from sheets of undifferentiated mesenchymal cells, most bones in the human body are first formed as cartilage templates. Cartilage is subsequently replaced by bone via a very tightly regulated process termed endochondral ossification, which is led by chondrocytes of the growth plate (GP). This process requires continuous communication between chondrocytes and invading cell populations, including osteoblasts, osteoclasts, and vascular cells.
View Article and Find Full Text PDFTissue Eng Part A
November 2024
Department of Molecular Pharmaceutics, Health Sciences, Cell Sheet Tissue Engineering Center (CSTEC), University of Utah, Salt Lake City, Utah, USA.
Osteoarthritis, a degenerative disease of articular cartilage and the leading cause of disability, is preceded by acute cartilage injury in a significant proportion of cases. Current auto- and allograft interventions are limited by supply and variability in therapeutic efficacy, prompting interest in tissue engineering solutions. Cell sheet tissue engineering, a scaffold-free regenerative technique, has shown promise in preclinical and clinical trials across various cell types and diseases.
View Article and Find Full Text PDFEXCLI J
September 2024
Radiobiology Laboratory, Greater Poland Cancer Centre, Garbary 15 Street, 61-866 Poznan, Poland.
Cartilage
September 2024
Cell Sheet Tissue Engineering Center, Department of Molecular Pharmaceutics, Health Sciences, The University of Utah, Utah, USA.
Purpose: This study aimed to establish a combined histological assessment system of neo-cartilage outcomes and to evaluate variations in an established rat defect model treated with human juvenile cartilage-derived chondrocyte (JCC) sheets fabricated from various donors.
Methods: JCCs were isolated from the polydactylous digits of eight patients. Passage 2 (P2) JCC sheets from all donors were transplanted into nude rat chondral defects for 4 weeks (27 nude rats in total).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!