Pipeline Sizing Based on Computer Simulation.

AJNR Am J Neuroradiol

Neuroendovascular Surgeon UNC Rex Hospital Raleigh, NC Adjunct Associate Professor of Neurology University of North Carolina - Chapel Hill Chapel Hill, NC.

Published: March 2019

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7028674PMC
http://dx.doi.org/10.3174/ajnr.A5998DOI Listing

Publication Analysis

Top Keywords

pipeline sizing
4
sizing based
4
based computer
4
computer simulation
4
pipeline
1
based
1
computer
1
simulation
1

Similar Publications

Predicting pack-ice seal occupancy of ice floes along the Western Antarctic Peninsula.

PLoS One

December 2024

Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, United States of America.

We explore the habitat use of Antarctic pack-ice seals by analyzing their occupancy patterns on pack-ice floes, employing a novel combination of segmented generalized linear regression and fine-scale (∼ 50 cm pixel resolution) sea ice feature extraction in satellite imagery. Our analysis of environmental factors identified ice floe size, fine-scale sea ice concentration and nearby marine topography as significantly correlated with seal haul out abundance. Further analysis between seal abundance and ice floe size identified pronounced shifts in the relationship between the number of seals hauled out and floe size, with a positive relationship up to approximately 50 m2 that diminishes for larger floe sizes and largely plateaus after 500 m2.

View Article and Find Full Text PDF

Background And Objective: Dysfunction of the right ventricular outflow tract (RVOT) is a common long-term complication following surgical repair in patients with congenital heart disease. Transcatheter pulmonary valve implantation (TPVI) offers a viable alternative to surgical pulmonary valve replacement (SPVR) for treating pulmonary regurgitation but not all RVOT anatomies are suitable for TPVI. To identify a suitable landing zone (LZ) for TPVI, three-dimensional multiphase (4D) computed tomography (CT) is used to evaluate the size, shape, and dynamic behavior of the RVOT throughout the cardiac cycle.

View Article and Find Full Text PDF

Applying artificial intelligence (AI) to image-based morphological profiling cells offers significant potential for identifying disease states and drug responses in high-content imaging (HCI) screens. When differences between populations (e.g.

View Article and Find Full Text PDF

An agarose fluidic chip for high-throughput organoid imaging.

Lab Chip

December 2024

Laboratory of Cell Biology and Histology, Faculty of Biomedical, Pharmaceutical and Veterinary sciences, University of Antwerp, Universiteitsplein 1, Antwerp, Belgium.

Modern cell and developmental biology increasingly relies on 3D cell culture systems such as organoids. However, routine interrogation with microscopy is often hindered by tedious, non-standardized sample mounting, limiting throughput. To address these bottlenecks, we have developed a pipeline for imaging intact organoids in flow, utilizing a transparent agarose fluidic chip that enables efficient and consistent recordings with theoretically unlimited throughput.

View Article and Find Full Text PDF

Background: Lewy body disorders (LBD), encompassing Parkinson disease (PD), PD dementia (PDD), and dementia with Lewy bodies (DLB), are characterized by alpha-synuclein pathology but often are accompanied by Alzheimer's disease (AD) neuropathological change (ADNC). The medial temporal lobe (MTL) is a primary locus of tau accumulation and associated neurodegeneration in AD. However, it is unclear the extent to which AD copathology in LBD (LBD/AD+) contributes to MTL-specific patterns of degeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!